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MedChemLens: An Interactive Visual Tool to Support Direction 
Selection in Interdisciplinary Experimental Research of Medicinal 

Chemistry 

Chuhan Shi, Fei Nie, Yicheng Hu*, Yige Xu*, Lei Chen, Xiaojuan Ma and Qiong Luo 

Fig. 1. MedChemLens: (A) The Drug Target Search view allows users to search drug targets by name. (B) The Signaling Pathway 
view presents the signaling pathways of the targets under search. (C) The Overview shows the overall distributions of the existing 
drug compound research. (D) The Publication Trend view displays the number of publications over time related to the targets under 
search. (E) The Detail View consists of (E1) the Chemistry panel, which summarizes the drug compounds proposed in chemical 
publications, (E2) the Pharmacology panel, which displays the molecular feature values of the drug compounds tested in in vitro and in
vivo pharmacological assays, and (E3) the Clinical Pharmacy panel, which visualizes the clinical trial progress of the drug compounds. 

Abstract— Interdisciplinary experimental science (e.g., medicinal chemistry) refers to the disciplines that integrate knowledge from 
different scientifc backgrounds and involve experiments in the research process. Deciding “in what direction to proceed” is critical for 
the success of the research in such disciplines, since the time, money, and resource costs of the subsequent research steps depend 
largely on this decision. However, such a direction identifcation task is challenging in that researchers need to integrate information 
from large-scale, heterogeneous materials from all associated disciplines and summarize the related publications of which the core 
contributions are often showcased in diverse formats. The task also requires researchers to estimate the feasibility and potential in 
future experiments in the selected directions. In this work, we selected medicinal chemistry as a case and presented an interactive 
visual tool, MedChemLens, to assist medicinal chemists in choosing their intended directions of research. This task is also known 
as drug target (i.e., disease-linked proteins) selection. Given a candidate target name, MedChemLens automatically extracts the 
molecular features of drug compounds from chemical papers and clinical trial records, organizes them based on the drug structures, 
and interactively visualizes factors concerning subsequent experiments. We evaluated MedChemLens through a within-subjects 
study (N=16). Compared with the control condition (i.e., unrestricted online search without using our tool), participants who only used 
MedChemLens reported faster search, better-informed selections, higher confdence in their selections, and lower cognitive load. 

Index Terms—Interdisciplinary experimental science, interactive visual analysis, scientifc literature data 

1 INTRODUCTION 
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3 DESIGN PROCESS 

Our goal is to support an in-depth and systematic exploration of litera-
ture and experimental data to help medicinal chemists decide potential 
directions (i.e., drug target selection) in their interdisciplinary exper-
imental research. Our design process started with a two-hour semi-
structured interview with each of six researchers (E1-E6) in the feld of 
medicinal chemistry to understand the current practices and challenges 
of drug target selection. E1 is a university professor with 9 years of 
research experience; E2 and E3 are postdocs in key drug discovery 
laboratory with 9 years of and 7 years of experience, respectively; E4 
and E5 are senior PhD students (4 years of experience); and E6 is 
a junior (1-year) PhD student. Based on their feedback, we derived 
a set of design requirements which guided our initial system design. 
In the later stages, we carried out bi-weekly meetings with these six 
researchers for three months to iteratively update the system design to 
ensure that our implementation addresses the requirements. 

3.1 Factors Related to Drug Target Selection 
Based on the interview results, we summarized the factors considered 
by medicinal chemists in the drug target selection process. 

1) Drug discovery process is a multifaceted process including the 
research of chemistry, pharmacology, and clinical pharmacy. E2-E5 
refected that medicinal chemists often integrate the knowledge of these 
related disciplines and evaluate the current research progress of poten-
tial drug targets as reported in the literature and experimental reports 
along this process. Usually, after deciding to proceed with a particular 
drug target, chemists are mainly concerned with structure activity de-
signs and chemical synthesis of potential drug compounds that could 
interact with the selected target [30]. Then the drug compounds are 
progressed to the next step for pharmacological testing, which includes 
in vitro tests (i.e., experiments conducted on microorganisms or cells 
outside of a living organism [43]) and in vivo tests (i.e., experiments 
conducted in a living organism, such as animal models [43]). Subse-
quently, drugs go through clinical trials with human subjects [43]. The 
clinical pharmacy research consists of three phases – phase I, phase II, 
and phase III, during which the adverse effects of drugs are tested. 

2) Drug target properties consist of the drug target structure, drug-
gability, and signaling pathway. E3, E4 and E6 suggested that medicinal 
chemists are interested in these properties because these properties can 
facilitate them to initially flter targets. Drug target structure is the 
protein structure of the drug target. Druggability is the likelihood of the 
drug target being able to be modulated by a drug [41]. To evaluate the 
druggability, chemists need to know the research progress of existing 
drug compounds for each candidate target. A Signaling pathway shows 
a chain of proteins activated by drug compounds binding with drug 
targets [42]. Upstream proteins undergo biochemical reactions and 
transmit signals to downstream proteins until therapeutic effects are 
produced. A signaling pathway often contains several drug targets. 

3) Molecular features of drug compounds often serve as the basis 
for evaluating the proposed drug compounds in terms of their viability 
as potential new drugs and are of major interest to medicinal chemists. 
All researchers we interviewed stated that they always spent the major-
ity of their time searching and reading related research publications to 
know the existing drug compounds against each candidate drug target. 
The molecular features they care about are tested in different drug 
discovery stages and thus may appear in different sections of a paper in 
a wide variety of forms. We describe the details of them in Table 1. 

3.2 Design Requirement 
Based on the analysis of the medicinal chemists’ feedback, we summa-
rized six design requirements for our system design. 

R1. Enable intuitive comparison of different targets on different 
scales. The system should support the comparison of candidate drug 
targets in different aspects, including the target properties, the research 
trend and popularity of targets over time, and the individual molecular 
feature of interest. For example, E3 said that medicinal chemists can 
directly flter out the candidates that do not satisfy their requirements 
for research directions by having an overview about the volume and 
stage of the related research. For the remaining candidate targets, 

researchers need to check detailed drug compound research information 
and progress to make their fnal decisions. 

R2. Provide a comprehensive picture of the research about 
each candidate drug target in three relevant disciplines. The system 
should provide an overarching summary of the drug compound research 
about each drug target. As mentioned by E1 and E3, each publication 
has a research goal of designing new drug compounds to enhance cer-
tain molecular feature(s). Researchers want to know the number and 
the overall distribution of the drug compound research focusing on 
each molecular feature. In addition, E2, E4 and E5 mentioned that as 
the same drug compound should be studied by different disciplines 
in different drug discovery stages, the related scholarly documenta-
tions are scattered in large-scale online resources from various felds. 
Since integrating research about the same drug compound manually is 
diffcult, research data on the same drug should be connected across 
disciplines and following the drug discovery process to facilitate medic-
inal chemists to streamline the literature survey process and track the 
development of each drug compound. 

R3. Organize scholarly documentations following the practice 
of each individual discipline. Researchers require an organization and 
presentation of the scholarly documentations to show the correspond-
ing research landscape and status in each individual discipline. All 
researchers pointed out that the chemical structures of the drug com-
pounds are the core fndings of medicinal chemical publications, and 
it is a common practice for medicinal chemists to organize literature 
based on chemical structures. In pharmacology, researcher focus on 
the values of molecular features tested in pharmacological assays. For 
clinical pharmacy, they want to know the status information for clinical 
trials, such as “how many organizations are conducting clinical trials” 
(E1) and “why some clinical trials were terminated” (E4). Visual de-
signs should be adapted for different data types to help users process 
and digest the heterogeneous research data in different disciplines. 

R4. Inspire drug target selection process and future drug com-
pound design. Researchers demand inspiration for the drug target 
selection process. E4 and E5 said that the system should help inspect 
signaling pathways to fnd the connection between the candidate drug 
targets and remind users of previously overlooked targets that could be 
candidates. E2 and E6 added the importance of knowing the shortcom-
ings of existing drug compounds and possible improvements so that 
users can get ideas for future research paths and drug design. 

R5. Support estimation of the feasibility and diffculty of fu-
ture practical experiments. The system should facilitate medicinal 
chemists to assess the feasibility and challenges of practical implemen-
tation when engaging in the medicinal chemical research related to 
the candidate drug targets. E1 and E4 hope the system can show the 
synthesis route lengths of the previous drug compounds against the 
candidate drug targets as indicators of synthesis diffculty and display 
what kinds of chemical structures can be advanced better in the course 
of drug discovery. Based on the molecular similarity principle [3] (i.e., 
two structurally similar molecules often have similar properties and can 
be analyzed using similar testing models), empirical information of ex-
isting studies can provide implications for the experimental feasibility 
of the new drug compounds designed by medicinal chemists. 

R6. Facilitate an interactive and customized data exploration. 
We observed that individual medicinal chemical researchers or research 
groups may have different focuses, information needs, and exploration 
patterns. E2 and E6 added that their research interests, abilities, and 
available laboratory facilities may also vary. Hence, the system should 
enable users to customize their preferences on different evaluation 
metrics and decision-making patterns interactively. 

4 MEDCHEMLENS 

We presented a visual analytic system MedChemLens to aid medicinal 
chemists in exploring literature and experimental data to select drug 
targets. MedChemLens incorporates the following fve views. The 
Drug Target Search view (Fig.1 A) allows users to search drug targets 
of interest and inspect their 2D structures (R1). The Signaling Pathway 
view (Fig.1 B) visualizes the interactions between the drug targets under 
search and prompts users for other possibly overlooked targets (R4). 

of the right starting point in the initial stage of scientifc inquiry can 2 RELATED WORK 
increase the chance of ultimate success. For instance, in medicinal 
chemistry, it may take more than 10 years from the identifcation of 
related chemical entities to marketed drugs [57], and cost at least a 
billion dollars [46]. If medicinal chemists choose to design drugs that 
interact with a human protein incapable of being modulated by any 
biological therapy, their design is likely to fail in the experimentation 
stage [14], leading to a substantial waste of time and money. 

Despite its importance, research direction selection in interdisci-
plinary experimental science is never an easy task. First, researchers 
often need to comprehensively integrate and make sense of large-scale, 
heterogeneous data from all related disciplines to evaluate candidate 
directions from both theoretical and practical perspectives [34]. They 
want to establish solid knowledge grounds for later hypothesis-driven 
experimentation, learn from lessons of prior research to minimize risks, 
and assess their competitiveness down the chosen path. However, exist-
ing scientifc literature analytic tools often focus on document organiza-
tion [11, 19, 25, 61], retrieval [5, 10, 18, 28], and discovery [6, 7, 23, 40]. 
Few works support the decision-making in research process and help 
balance the considerations from both science and strategy aspects. Sec-
ond, existing methods for extracting and organizing data from scholarly 
documentations (e.g., publications, lab reports, etc.) may not adequately 
meet the data integration needs of researchers in interdisciplinary ex-
perimental science felds. For example, medicinal chemists commonly 
organize literature by the chemical structures of drug compounds pro-
posed in the papers [3], while documents are conventionally grouped 
and indexed by keywords [60,63], author network [36,62], and citation 
links [5, 27]. Third, it is challenging for researchers in interdisciplinary 
experimental science to estimate the feasibility and diffculties of future 
experimental testing, a critical research component, stemming from 
their decisions. When inspecting a candidate research direction, indi-
vidual researchers or research groups may have different concerns, such 
as personal skills and laboratory resources available for experiments. 

In this work, we selected medicinal chemistry as a case to demon-
strate how an interactive scientifc literature analytic system can help 
address the aforementioned challenges in the research direction selec-
tion in interdisciplinary experimental science. Medicinal chemistry is a 
scientifc discipline at the intersection of chemistry, pharmacology, and 
clinical pharmacy [22]. In medicinal chemistry, for a specifc disease, 
researchers need to select a particular drug target (i.e., disease-linked 
proteins in the human body that are agents being modulated by drugs 
to produce therapeutic effects) from a pool of candidates, and then 
design and test out drug compounds against the chosen target [30, 32]. 
We proposed an interactive visual tool called MedChemLens to assist 
medicinal chemists in the identifcation of a drug target that is most 
likely to lead to a promising research path of subsequent drug design. 
MedChemLens integrates and visualizes relevant literature and data 
from three related disciplines: chemistry, pharmacology, and clini-
cal pharmacy. It retrieves drug compounds associated with the given 
drug target candidates that have been reported in scholarly publications 
and extracts the key molecular features of these compounds from the 
text, images, and tables of the returned documents. With these data, 
it enables the organization of the related papers by similarities in the 
chemical structures of the drug compounds in connection to each can-
didate target. Moreover, MedChemLens facilitates the exploration of 
potential research paths following different drug targets to help users 
evaluate the practicality and potential risks of the chemical experiments 
in future research processes. A within-subjects user study with 16 
medicinal chemistry researchers of various levels of expertise provided 
support for the usefulness and effectiveness of our system. 

In summary, our major contributions are: 

• MedChemLens, an interactive visual tool to support medicinal 
chemists to evaluate possible research directions by analyzing 
and comparing relevant literature and experimental data. 

• A within-subjects user study that demonstrates the effectiveness 
of our approach in helping users select research directions in the 
interdisciplinary experimental research of medicinal chemistry. 

2.1 Visual Analysis of Scientifc Literature 

Plenty of research has been conducted to provide interactive visualiza-
tion to support the exploration and analysis of scientifc literature. They 
mainly focus on assisting users in searching, organizing, and retrieving 
their desired research papers from broad sources. For example, Benito-
Santos et al. [6] presented GlassViz that helps researchers explore a 
large document corpus by visualizing the entry points. Costagliola et 
al. [13] proposed a 3D analytical interface, CyBiS, that shows document 
items as spheres embedded in a 3D cylinder and supports operations 
such as rotate to refne search. To organize and reveal the relation-
ships between documents, Zhao et al. [62] proposed PivotSlice which 
applies both node-link view and customized dynamic tabular view to 
represent the relationships across literature data items. Wang et al. [54] 
developed TopicPanorama which combines a radial icicle plot and a 
density-based graph to show a full picture of relevant topics from multi-
ple sources. Moreover, some existing systems were proposed to support 
retrieving users’ desired information from documents. For example, 
Beck et al. [5] presented SurVis which contains a word-sized sparkline 
enabling users to conduct textual search on details such as keywords, 
meta-information, and relationships. However, the visual analysis of 
scientifc literature in our scenario is more complicated since we need 
to not only help researchers browse and explore related literature to 
establish solid knowledge backgrounds but also support the trade-off 
of risks and output of research paths to help researchers in decisions-
making process. In addition, future experimental testing might affect 
researchers’ research direction selection, yet few existing works have 
managed to help estimate its feasibility and diffculties. 

In the existing visual scientifc literature analytic tools, the publi-
cations are mainly organized and indexed by citation links, keywords, 
and author network. For instance, Burger et al. [7] applied citation 
contexts to develop a word-document 2D projection in their proposed 
visualization scheme cite2vec. Dattolo et al. [15] presented Visual-
Bib which groups papers based on the corresponding bibliographies. 
Elmqvist et al. [20] comprehensively applied keywords, co-authorship, 
and citation to organize publications in their system CiteWiz. However, 
the information that researchers in interdisciplinary experimental felds 
are interested in goes beyond these data types. For example, it is a 
common practice in chemistry to organize publications by the images 
of molecular structures. While there is existing work emphasizing the 
importance of the images in publications (e.g., Chen et al. [9] proposed 
a dataset called VIS30K that represents visualization papers with fg-
ures), they still built the relationships between publications based on 
conventional data types, which cannot satisfy the needs in chemistry. 

2.2 Visualization for Drug Target Selection 

Previous works have explored different visualization methods to assist 
medicinal chemists in drug target selection. These methods were mainly 
used to present data within a specifc discipline or across disciplines 
in the drug discovery process. For the visual representation of data 
within one area, node-edge network is widely applied in existing tools. 
For example, Promiscuous [50], Dinies [58], and TargetNet [59] were 
all web-based services that use node-edge networks to represent drug-
target interactions. Furthermore, multimodal visualization interfaces 
are utilized for multifaceted data. For example, Open Targets Plat-
form [33] integrated pathway overview maps and hierarchical networks 
to present drug-disease associations. Pharos [39] assigned different 
diagrams based on the data type, such as radial pie chart for categorical 
data and word cloud for textual data, to help aggregate information 
about drug targets from diverse resources. However, these tools only 
focus on a single area and fail to connect the disciplines involved in 
the drug discovery process. Some visual tools have been proposed to 
display data across disciplines. For example, ChEMBL [38] integrated 
medicinal chemistry data with pharmaceutical knowledge by creating a 
sunburst view to show the drug target classifcation and a heatmap view 
to show molecular bioactivity. However, such systems only provided a 
broad view of drug targets but lacked summaries of relevant research 
which would beneft medicinal chemists’ future drug design. 
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3 DESIGN PROCESS 

Our goal is to support an in-depth and systematic exploration of litera-
ture and experimental data to help medicinal chemists decide potential 
directions (i.e., drug target selection) in their interdisciplinary exper-
imental research. Our design process started with a two-hour semi-
structured interview with each of six researchers (E1-E6) in the feld of 
medicinal chemistry to understand the current practices and challenges 
of drug target selection. E1 is a university professor with 9 years of 
research experience; E2 and E3 are postdocs in key drug discovery 
laboratory with 9 years of and 7 years of experience, respectively; E4 
and E5 are senior PhD students (4 years of experience); and E6 is 
a junior (1-year) PhD student. Based on their feedback, we derived 
a set of design requirements which guided our initial system design. 
In the later stages, we carried out bi-weekly meetings with these six 
researchers for three months to iteratively update the system design to 
ensure that our implementation addresses the requirements. 

3.1 Factors Related to Drug Target Selection 
Based on the interview results, we summarized the factors considered 
by medicinal chemists in the drug target selection process. 

1) Drug discovery process is a multifaceted process including the 
research of chemistry, pharmacology, and clinical pharmacy. E2-E5 
refected that medicinal chemists often integrate the knowledge of these 
related disciplines and evaluate the current research progress of poten-
tial drug targets as reported in the literature and experimental reports 
along this process. Usually, after deciding to proceed with a particular 
drug target, chemists are mainly concerned with structure activity de-
signs and chemical synthesis of potential drug compounds that could 
interact with the selected target [30]. Then the drug compounds are 
progressed to the next step for pharmacological testing, which includes 
in vitro tests (i.e., experiments conducted on microorganisms or cells 
outside of a living organism [43]) and in vivo tests (i.e., experiments 
conducted in a living organism, such as animal models [43]). Subse-
quently, drugs go through clinical trials with human subjects [43]. The 
clinical pharmacy research consists of three phases – phase I, phase II, 
and phase III, during which the adverse effects of drugs are tested. 

2) Drug target properties consist of the drug target structure, drug-
gability, and signaling pathway. E3, E4 and E6 suggested that medicinal 
chemists are interested in these properties because these properties can 
facilitate them to initially flter targets. Drug target structure is the 
protein structure of the drug target. Druggability is the likelihood of the 
drug target being able to be modulated by a drug [41]. To evaluate the 
druggability, chemists need to know the research progress of existing 
drug compounds for each candidate target. A Signaling pathway shows 
a chain of proteins activated by drug compounds binding with drug 
targets [42]. Upstream proteins undergo biochemical reactions and 
transmit signals to downstream proteins until therapeutic effects are 
produced. A signaling pathway often contains several drug targets. 

3) Molecular features of drug compounds often serve as the basis 
for evaluating the proposed drug compounds in terms of their viability 
as potential new drugs and are of major interest to medicinal chemists. 
All researchers we interviewed stated that they always spent the major-
ity of their time searching and reading related research publications to 
know the existing drug compounds against each candidate drug target. 
The molecular features they care about are tested in different drug 
discovery stages and thus may appear in different sections of a paper in 
a wide variety of forms. We describe the details of them in Table 1. 

3.2 Design Requirement 
Based on the analysis of the medicinal chemists’ feedback, we summa-
rized six design requirements for our system design. 

R1. Enable intuitive comparison of different targets on different 
scales. The system should support the comparison of candidate drug 
targets in different aspects, including the target properties, the research 
trend and popularity of targets over time, and the individual molecular 
feature of interest. For example, E3 said that medicinal chemists can 
directly flter out the candidates that do not satisfy their requirements 
for research directions by having an overview about the volume and 
stage of the related research. For the remaining candidate targets, 

researchers need to check detailed drug compound research information 
and progress to make their fnal decisions. 

R2. Provide a comprehensive picture of the research about 
each candidate drug target in three relevant disciplines. The system 
should provide an overarching summary of the drug compound research 
about each drug target. As mentioned by E1 and E3, each publication 
has a research goal of designing new drug compounds to enhance cer-
tain molecular feature(s). Researchers want to know the number and 
the overall distribution of the drug compound research focusing on 
each molecular feature. In addition, E2, E4 and E5 mentioned that as 
the same drug compound should be studied by different disciplines 
in different drug discovery stages, the related scholarly documenta-
tions are scattered in large-scale online resources from various felds. 
Since integrating research about the same drug compound manually is 
diffcult, research data on the same drug should be connected across 
disciplines and following the drug discovery process to facilitate medic-
inal chemists to streamline the literature survey process and track the 
development of each drug compound. 

R3. Organize scholarly documentations following the practice 
of each individual discipline. Researchers require an organization and 
presentation of the scholarly documentations to show the correspond-
ing research landscape and status in each individual discipline. All 
researchers pointed out that the chemical structures of the drug com-
pounds are the core fndings of medicinal chemical publications, and 
it is a common practice for medicinal chemists to organize literature 
based on chemical structures. In pharmacology, researcher focus on 
the values of molecular features tested in pharmacological assays. For 
clinical pharmacy, they want to know the status information for clinical 
trials, such as “how many organizations are conducting clinical trials” 
(E1) and “why some clinical trials were terminated” (E4). Visual de-
signs should be adapted for different data types to help users process 
and digest the heterogeneous research data in different disciplines. 

R4. Inspire drug target selection process and future drug com-
pound design. Researchers demand inspiration for the drug target 
selection process. E4 and E5 said that the system should help inspect 
signaling pathways to fnd the connection between the candidate drug 
targets and remind users of previously overlooked targets that could be 
candidates. E2 and E6 added the importance of knowing the shortcom-
ings of existing drug compounds and possible improvements so that 
users can get ideas for future research paths and drug design. 

R5. Support estimation of the feasibility and diffculty of fu-
ture practical experiments. The system should facilitate medicinal 
chemists to assess the feasibility and challenges of practical implemen-
tation when engaging in the medicinal chemical research related to 
the candidate drug targets. E1 and E4 hope the system can show the 
synthesis route lengths of the previous drug compounds against the 
candidate drug targets as indicators of synthesis diffculty and display 
what kinds of chemical structures can be advanced better in the course 
of drug discovery. Based on the molecular similarity principle [3] (i.e., 
two structurally similar molecules often have similar properties and can 
be analyzed using similar testing models), empirical information of ex-
isting studies can provide implications for the experimental feasibility 
of the new drug compounds designed by medicinal chemists. 

R6. Facilitate an interactive and customized data exploration. 
We observed that individual medicinal chemical researchers or research 
groups may have different focuses, information needs, and exploration 
patterns. E2 and E6 added that their research interests, abilities, and 
available laboratory facilities may also vary. Hence, the system should 
enable users to customize their preferences on different evaluation 
metrics and decision-making patterns interactively. 

4 MEDCHEMLENS 

We presented a visual analytic system MedChemLens to aid medicinal 
chemists in exploring literature and experimental data to select drug 
targets. MedChemLens incorporates the following fve views. The 
Drug Target Search view (Fig.1 A) allows users to search drug targets 
of interest and inspect their 2D structures (R1). The Signaling Pathway 
view (Fig.1 B) visualizes the interactions between the drug targets under 
search and prompts users for other possibly overlooked targets (R4). 

of the right starting point in the initial stage of scientifc inquiry can 2 RELATED WORK 
increase the chance of ultimate success. For instance, in medicinal 
chemistry, it may take more than 10 years from the identifcation of 
related chemical entities to marketed drugs [57], and cost at least a 
billion dollars [46]. If medicinal chemists choose to design drugs that 
interact with a human protein incapable of being modulated by any 
biological therapy, their design is likely to fail in the experimentation 
stage [14], leading to a substantial waste of time and money. 

Despite its importance, research direction selection in interdisci-
plinary experimental science is never an easy task. First, researchers 
often need to comprehensively integrate and make sense of large-scale, 
heterogeneous data from all related disciplines to evaluate candidate 
directions from both theoretical and practical perspectives [34]. They 
want to establish solid knowledge grounds for later hypothesis-driven 
experimentation, learn from lessons of prior research to minimize risks, 
and assess their competitiveness down the chosen path. However, exist-
ing scientifc literature analytic tools often focus on document organiza-
tion [11, 19, 25, 61], retrieval [5, 10, 18, 28], and discovery [6, 7, 23, 40]. 
Few works support the decision-making in research process and help 
balance the considerations from both science and strategy aspects. Sec-
ond, existing methods for extracting and organizing data from scholarly 
documentations (e.g., publications, lab reports, etc.) may not adequately 
meet the data integration needs of researchers in interdisciplinary ex-
perimental science felds. For example, medicinal chemists commonly 
organize literature by the chemical structures of drug compounds pro-
posed in the papers [3], while documents are conventionally grouped 
and indexed by keywords [60,63], author network [36,62], and citation 
links [5, 27]. Third, it is challenging for researchers in interdisciplinary 
experimental science to estimate the feasibility and diffculties of future 
experimental testing, a critical research component, stemming from 
their decisions. When inspecting a candidate research direction, indi-
vidual researchers or research groups may have different concerns, such 
as personal skills and laboratory resources available for experiments. 

In this work, we selected medicinal chemistry as a case to demon-
strate how an interactive scientifc literature analytic system can help 
address the aforementioned challenges in the research direction selec-
tion in interdisciplinary experimental science. Medicinal chemistry is a 
scientifc discipline at the intersection of chemistry, pharmacology, and 
clinical pharmacy [22]. In medicinal chemistry, for a specifc disease, 
researchers need to select a particular drug target (i.e., disease-linked 
proteins in the human body that are agents being modulated by drugs 
to produce therapeutic effects) from a pool of candidates, and then 
design and test out drug compounds against the chosen target [30, 32]. 
We proposed an interactive visual tool called MedChemLens to assist 
medicinal chemists in the identifcation of a drug target that is most 
likely to lead to a promising research path of subsequent drug design. 
MedChemLens integrates and visualizes relevant literature and data 
from three related disciplines: chemistry, pharmacology, and clini-
cal pharmacy. It retrieves drug compounds associated with the given 
drug target candidates that have been reported in scholarly publications 
and extracts the key molecular features of these compounds from the 
text, images, and tables of the returned documents. With these data, 
it enables the organization of the related papers by similarities in the 
chemical structures of the drug compounds in connection to each can-
didate target. Moreover, MedChemLens facilitates the exploration of 
potential research paths following different drug targets to help users 
evaluate the practicality and potential risks of the chemical experiments 
in future research processes. A within-subjects user study with 16 
medicinal chemistry researchers of various levels of expertise provided 
support for the usefulness and effectiveness of our system. 

In summary, our major contributions are: 

• MedChemLens, an interactive visual tool to support medicinal 
chemists to evaluate possible research directions by analyzing 
and comparing relevant literature and experimental data. 

• A within-subjects user study that demonstrates the effectiveness 
of our approach in helping users select research directions in the 
interdisciplinary experimental research of medicinal chemistry. 

2.1 Visual Analysis of Scientifc Literature 

Plenty of research has been conducted to provide interactive visualiza-
tion to support the exploration and analysis of scientifc literature. They 
mainly focus on assisting users in searching, organizing, and retrieving 
their desired research papers from broad sources. For example, Benito-
Santos et al. [6] presented GlassViz that helps researchers explore a 
large document corpus by visualizing the entry points. Costagliola et 
al. [13] proposed a 3D analytical interface, CyBiS, that shows document 
items as spheres embedded in a 3D cylinder and supports operations 
such as rotate to refne search. To organize and reveal the relation-
ships between documents, Zhao et al. [62] proposed PivotSlice which 
applies both node-link view and customized dynamic tabular view to 
represent the relationships across literature data items. Wang et al. [54] 
developed TopicPanorama which combines a radial icicle plot and a 
density-based graph to show a full picture of relevant topics from multi-
ple sources. Moreover, some existing systems were proposed to support 
retrieving users’ desired information from documents. For example, 
Beck et al. [5] presented SurVis which contains a word-sized sparkline 
enabling users to conduct textual search on details such as keywords, 
meta-information, and relationships. However, the visual analysis of 
scientifc literature in our scenario is more complicated since we need 
to not only help researchers browse and explore related literature to 
establish solid knowledge backgrounds but also support the trade-off 
of risks and output of research paths to help researchers in decisions-
making process. In addition, future experimental testing might affect 
researchers’ research direction selection, yet few existing works have 
managed to help estimate its feasibility and diffculties. 

In the existing visual scientifc literature analytic tools, the publi-
cations are mainly organized and indexed by citation links, keywords, 
and author network. For instance, Burger et al. [7] applied citation 
contexts to develop a word-document 2D projection in their proposed 
visualization scheme cite2vec. Dattolo et al. [15] presented Visual-
Bib which groups papers based on the corresponding bibliographies. 
Elmqvist et al. [20] comprehensively applied keywords, co-authorship, 
and citation to organize publications in their system CiteWiz. However, 
the information that researchers in interdisciplinary experimental felds 
are interested in goes beyond these data types. For example, it is a 
common practice in chemistry to organize publications by the images 
of molecular structures. While there is existing work emphasizing the 
importance of the images in publications (e.g., Chen et al. [9] proposed 
a dataset called VIS30K that represents visualization papers with fg-
ures), they still built the relationships between publications based on 
conventional data types, which cannot satisfy the needs in chemistry. 

2.2 Visualization for Drug Target Selection 

Previous works have explored different visualization methods to assist 
medicinal chemists in drug target selection. These methods were mainly 
used to present data within a specifc discipline or across disciplines 
in the drug discovery process. For the visual representation of data 
within one area, node-edge network is widely applied in existing tools. 
For example, Promiscuous [50], Dinies [58], and TargetNet [59] were 
all web-based services that use node-edge networks to represent drug-
target interactions. Furthermore, multimodal visualization interfaces 
are utilized for multifaceted data. For example, Open Targets Plat-
form [33] integrated pathway overview maps and hierarchical networks 
to present drug-disease associations. Pharos [39] assigned different 
diagrams based on the data type, such as radial pie chart for categorical 
data and word cloud for textual data, to help aggregate information 
about drug targets from diverse resources. However, these tools only 
focus on a single area and fail to connect the disciplines involved in 
the drug discovery process. Some visual tools have been proposed to 
display data across disciplines. For example, ChEMBL [38] integrated 
medicinal chemistry data with pharmaceutical knowledge by creating a 
sunburst view to show the drug target classifcation and a heatmap view 
to show molecular bioactivity. However, such systems only provided a 
broad view of drug targets but lacked summaries of relevant research 
which would beneft medicinal chemists’ future drug design. 
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research progress. Thus, hovering over a cell without a distribution plot 
pops up a tooltip clarifying the reason (“no results reported” or “no 
studies completed”). Upon searching a target in the Drug Target Search 
view, by default the table will add a new row accordingly containing 
all feature columns. Users can remove columns of features by clicking 
the delete button in the column headers and add features back from a 
drop-down menu in the upper right corner of the Overview (R6). 

4.4 Publication Trend View 
The Publication Trend view (Fig.1 D) displays the temporal changes 
in the number of publications related to each candidate drug target in 
three disciplines (i.e., chemistry, pharmacology, clinical pharmacy), 
respectively, in area charts. It helps users explore the research trend 
and the evolution of each candidate’s popularity over time (R1). Upon 
searching a target in the Drug Target Search view, an area chart aligning 
with the target item in the search view appears, showing the publication 
trend from 1990 to the present by default. Users can adjust the date via 
a time slider and the area charts will be adjusted accordingly (R6). 

4.5 Detail View 
Upon selecting a drug target in the Drug Target Search view, the Detail 
View (Fig.1 E) presents the research landscape of the existing works 
about it in each discipline (i.e., chemistry, pharmacology, and clinical 
pharmacy) (R3). The Detail View aims to help users integrate research 
data of the drug compounds against selected target across disciplines 
(R2), and compare the detailed drug compound research progress of 
the targets (R1). The Detail View contains three panels (i.e., Chemistry 
panel (Fig.1 E1), Pharmacology panel (Fig.1 E2), and Clinical Phar-
macy panel (Fig.1 E3)) arranged from left to right following the drug 
discovery process. The discipline-specifc data points on the same drug 
compound in each panel are linked through lines. Hovering over a data 
point in any panel highlights the entire chain (R2). 

Chemistry Panel The Chemistry panel (Fig.1 E1) summarizes in-
formation about the design and synthesis of drug compounds. Each 
chemistry publication that designed new drug compounds against the 
user-selected drug target is projected into a 2D canvas as a circular 
glyph. The length of the colored segment in the outer ring of the glyph 
denotes the length of the synthesis route of the core drug compound 
proposed by the publication. The size of the inner core encodes the total 
number of drug compounds proposed by the publication. The distance 
between each pair of glyphs indicates the structural similarity between 
their core drug compounds. Glyphs close to each other indicates they 
have similar corresponding chemical structures. When a glyph is hov-
ered on, the molecular features of the core drug compounds emphasized 
in chemistry research are displayed in a pop-up tooltip (Fig.5 (b)). The 
information of the corresponding publication, including graphic ab-
stracts, title, author(s), publication year, DOI (Digital Object Identifer), 
venue, citation number, and affliation, are also shown in the tooltip. 
Users can click on the DOI to check the publication online. 

Glyph alternatives. The circular glyph in the Chemistry panel was 
designed and refned several times based on the feedback from the six 
researchers (Section 3). The frst alternative (Fig.3 A) is similar to our 
fnal design except that the total number of drug compounds proposed 
by a publication is encoded using a monotonic, sequential color scale 
in red hue in the background of the inner core. A darker or lighter color 
indicates more or fewer compounds, respectively. However, we rejected 
this design as the researchers implied that they hoped to intuitively 
understand how big design space is that the compounds proposed by 
each paper occupy. Thus, in the second alternative (Fig.3 B), we used 
the size of the ring to represent the number of drug compounds in a 
paper. However, this design was rejected as it is diffcult to identify the 
distance between two glyphs to fgure out the structural similarity of 
their drug compounds. This leads us to the current design (Fig.3 C). 

Pharmacology Panel The Pharmacology panel (Fig.1 E2) displays 
the common molecular features of each drug compound concerned 
in pharmacological testings. It contains two heatmaps correspond-
ing to the in vitro (left) and in vivo (right) assays, respectively. In 
each heatmap, each column represents a molecular feature and each 
row corresponds to a drug compound. If a drug compound proposed 

Fig. 3. Glyph alternatives. The length of the colored segment in the outer 
ring all represents the length of the synthesis route while the number of 
drug compounds in a paper is encoded differently: A) by the sequential 
color scale of the inner core, e.g., a darker color indicates more drug 
compounds studied; B) by the size of the ring, e.g., a bigger size indicates 
more drug compounds included; and C) our current design. 

in some chemistry publications never advances to pharmacological 
testing, it does not have a corresponding row in the in vitro heatmap. 
Similarly, the in vivo heatmap does not contain rows associated with 
drug compounds that have not proceeded to in vivo assays. We applied 
a monotonic, sequential color scale in blue hue to the background of a 
tile to encode its feature value. Darker (lighter) color indicates higher 
(lower) value. White is for the case when certain molecular features 
have not been tested and/or reported in the related publications though 
the drug compounds have been studied in pharmacological research. 
Detailed feature value is displayed in a tooltip when hovering over a 
tile. If all the rows cannot be ft into the panel, scrolling will be enabled. 
The Pharmacology panel also allows users to sort rows in a heatmap in 
ascending or descending order of the values in a specifc column (R6). 

Clinical Pharmacy Panel The Clinical Pharmacy panel incorporates 
a Sankey diagram to show the clinical study information from phase I 
to phase III of the drug compounds that have been advanced to clinical 
trials (Fig.1 E2). Each section in the Sankey diagram represents a drug 
compound and consists of nine subsections arranged in vertical order, 
corresponding to nine statuses of clinical studies: 1) not yet recruiting; 
2) recruiting; 3) enrolling by invitation; 4) active, not recruiting; 5) 
suspended; 6) terminated; 7) completed; 8) withdrawn; and 9) unknown 
status [24]. If there are no studies in certain status, the subsection will 
be left empty. A subsection contains one or more rectangles, each rep-
resenting an organization that is conducting or has conducted clinical 
studies about the drug. The trace connecting rectangles in different 
phases shows the progress of each clinical trial conducted by an orga-
nization. Hovering over a rectangle highlights the trace and triggers a 
tooltip showing the organization and drug name. If the organization’s 
clinical trial is terminated or withdrawn, reasons will be shown too. To 
help users easily grasp how many drugs against the selected target are 
tested in clinical trials and how many organizations are involved, we 
mark each rectangle in the form of ‘drug ID - organization ID’. 

5 USAGE SCENARIO 

We describe how Hannah, a PhD student in medicinal chemistry, uses 
MedChemLens to complete drug target selection. Hannah has picked 
four candidate drug targets for cancer, including EGFR, ALK, KRAS 
(Kirsten rat sarcoma virus), and STAT3 (Signal transducer and activator 
of transcription 3). Now she wants to use MedChemLens to investigate 
and compare these targets and choose one as her research direction. 

She starts from the Drug Target Search view (Fig.1 A) by searching 
four drug targets and inspecting their structures. Then she examines the 
Signaling Pathway view (Fig.1 B) and notices that HER2 is an upstream 
target similar to EGFR and ALK which she missed in the target candi-
date collection. Thus, she searches “HER2” in the Drug Target Search 
view. Also, she fnds that KRAS and STAT3 are downstream targets of 
EGFR, ALK, and HER2. Thus, if she chooses to study EGFR, ALK, 
and HER2, she also need to learn KRAS and STAT3, since upstream 
targets taking effect needs to go through downstream targets [2]. 

Then she turns to the Publication Trend view (Fig.1 D) to under-
stand each drug target’s research popularity and trend. She adjusts the 
publication date to 2012 - 2022 as she usually does. The view shows 
that EGFR has the most related publications, which indicates its high 
popularity and made her tentatively decide to rule out EGFR. Never-
theless, before making the fnal decision, she further clicks “EGFR” in 
the Drug Target Search view and examines existing drug compounds 
against EGFR in the Detail View. In the Chemistry panel, she easily 
notices that most glyphs are large and lie together, indicating that the 
chemical structures proposed were studied in-depth and that the latest 
proposed compounds were similar to the previous ones. In the Clinical 

Table 1. Molecular features about drug compounds that participants focus on during drug target selection 

Discipline Molecular Features Description 
IC50 The concentration of an inhibitor needed to block a given predefned stimulus by 50% [44]. 

Chemistry 
Inhibition constant (Ki) 
Kd 

The concentration needed to perform half maximal inhibition [44]. 
The equilibrium dissociation constant of a ligand receptor complex measured in a binding assay [30]. 

Selectivity The drug’s ability to preferentially produce a desired versus a non-desired effect [8]. 
IC50 Similar to IC50 in Chemistry but the inhibition is on cell receptors instead of enzyme [44]. 
EC50 The effective concentration of an agonist producing half maximum response to the particular drug [30]. 

in vitro 
Selectivity 
hERG 

Similar to selectivity in Chemistry but with fewer reaction sites. 
The inhibition of hERG channel. Lower value indicates lower cardiotoxicity and therefore lower risks. 

Pharmacology 
Solubility 
ED50 

The maximum saturation concentration of a substance in a solvent [47]. High solubility is desired in drug design. 
A dose or concentration of an agonist producing half maximal pharmacological effect in vivo [17, 30]. 

in vivo 
Half-life 
AUC 

The time required for the concentration of a drug to decline to half of its initial value [44]. 
The area under the plasma drug concentration-time curve. 

Bioavailability The extent a drug becomes completely available to its biological destinations [12]. 
Clinical Adverse effects Any undesired harmful effects in a patient or clinical investigation subject administered a pharmaceutical 
Pharmacy treatment and which is not required to have a causal relationship with this treatment [26]. 

The Overview (Fig.1 C) presents the overall performance distributions 
of existing drug compound research on the candidate targets to help 
understand the current research progress and diffculty as measured by 
assorted molecular features and inspire possible areas of improvement 
(R1, R2, R4, R5). The Publication Trend view (Fig.1 D) shows the 
research trend of each drug target searched by the user (R1). The 
Detail view (Fig.1 E) facilitates a detailed exploration of the research 
landscape of candidate drug targets in each discipline (i.e., chemistry, 
pharmacology, and clinical pharmacy) and helps integrate the research 
data across disciplines (R1, R2, R3). Furthermore, a collection of 
interactions, such as sorting, highlighting, and tooltips, is also provided 
for users to examine and compare the drug targets freely (R6). 

4.1 Drug Target Search View 

The Drug Target Search view (Fig.1 A) allows users to type the name 
of a drug target (e.g., “EGFR”, “KRAS”) of interest into the search box 
and returns a card containing its 2D structure (R1). Information about 
associated publications also appears in the same row in the Overview 
and Publication Trend view. Users can hover over a structure to enlarge 
it. They can also drag the target card up and down to place similar 
ones next to each other for easier comparison (R6). Corresponding 
information in the Overview and the Publication Trend view will also 
change position accordingly. Upon clicking on a card, the detailed 
research information of the selected target will be shown in the Detail 
View. Users can remove a target and all its related information by 
hitting the delete button on its card. 

4.2 Signaling Pathway 

The Signaling Pathway view (Fig.1 B) aims to help users understand 
the interactions between the candidate targets in the search view and 
remind users of other drug targets that may be overlooked by them (R4). 
Every time a new target is added to the Drug Target Search view, the 
Signaling Pathway view displays its corresponding signaling pathway 
with respect to other input targets in a tree format. This view allows 
users to get a sense of the interconnections (or the lack of connections) 
among various targets. In particular, each target is denoted by a unique 
node that may be shared by several paths. There could be several 
connected components appearing as separate trees. For example, as 
JAK (Janus kinase) is the downstream drug target of EGFR (Epidermal 
growth factor recepto), ALK (Anaplastic lymphoma kinase), and HER2 
(Human epidermal growth factor receptor 2), the signaling pathways of 
EGFR, ALK, and HER2 share the node representing JAK in Fig.1 B. 
All nodes representing the targets searched by the user are highlighted 
for easily locating. In addition, the Signaling Pathway view supports 
zooming and panning to obtain a clearer view, especially when the tree 
visualization becomes overly complex. 

Design alternatives. Initially, we have considered displaying the 
signaling pathway of each drug target under search separately in a tree 
format (Fig.2 A). However, it will be diffcult for medicinal chemists to 
integrate the information across these signaling pathways to identify the 
relationships between the targets. We then tried to merge the signaling 
pathways in a subway map metaphor design (Fig.2 B). Users can click 

Fig. 2. Design alternatives for the Signaling Pathway view: A) separate 
trees; B) subway metaphor map; C) our current design. 

on a drug target of interest, and its signaling pathway will be highlighted 
for easier inspection. This makes the relationships between the drug 
targets clearer but causes visual clutters. Specifcally, when the number 
of targets increases, additional overhead is required to distinguish the 
intertwined links. Also, the researchers we interviewed (Section 3) 
considered keeping redundant links in the combined pathway graph 
unnecessary for drug target selection. Thus, we merged the overlapping 
links between drug targets in our current design (Fig.2 C). 

4.3 Overview 
For each drug target, the Overview (Fig.1 C) aims to provide an overar-
ching picture of the drug compound designs related to the molecular 
features using a tabular design (R2). Each row associates with a drug 
target and aligns with the target’s position in the list of all input candi-
dates in the Drug Target Search view; each column corresponds to a 
feature introduced in Table 1. The chemistry- (colored in a red theme), 
pharmacology- (blue), and clinical-pharmacy-related (orange) columns 
are arranged from left to right following the drug discovery process to 
show the research progress of the drug target (R2). The background 
color shading of each cell in the chemistry- and pharmacology-related 
columns denotes the number of publications whose proposed com-
pounds improved the corresponding molecular feature, while in the 
clinical-pharmacy-related columns it encodes the number of clinical 
studies in each phase of clinical trials. Darker color implies more publi-
cations fall in the cell; white means no related work exists. The number 
of publications is shown in the upper right corner of the cell. 

To summarize the performance of related work on a molecular fea-
ture, we displayed the distributions of reported feature values in these 
works as a line chart in the corresponding cell (R2). This distribution 
can also imply how diffcult it is to improve the feature (R5). The x-
dimension represents the published feature values and the y-dimension 
indicates the number of publications/studies achieving a value. The 
minimum and maximum feature values are displayed on the x-axis 
indicating the progress of the research on a particular molecular feature 
(R1) and hinting researchers about what can be further improved (R4). 
Hovering over each dot on the plot displays a tooltip of feature value 
and the number of publications/studies accordingly. Because ongoing 
or completed but confdential [48] clinical studies can not report their 
study results, there may be no distribution plot summarizing the clinical 
trial results even though the cell shows that there are clinical studies 
on the drug target. This discrepancy might confuse users about the 

Authorized licensed use limited to: Peking University. Downloaded on November 08,2023 at 12:31:59 UTC from IEEE Xplore.  Restrictions apply. 



67shi ET AL.: MedChemLens: An Interactive Visual Tool to Support Direction Selection in...

research progress. Thus, hovering over a cell without a distribution plot 
pops up a tooltip clarifying the reason (“no results reported” or “no 
studies completed”). Upon searching a target in the Drug Target Search 
view, by default the table will add a new row accordingly containing 
all feature columns. Users can remove columns of features by clicking 
the delete button in the column headers and add features back from a 
drop-down menu in the upper right corner of the Overview (R6). 

4.4 Publication Trend View 
The Publication Trend view (Fig.1 D) displays the temporal changes 
in the number of publications related to each candidate drug target in 
three disciplines (i.e., chemistry, pharmacology, clinical pharmacy), 
respectively, in area charts. It helps users explore the research trend 
and the evolution of each candidate’s popularity over time (R1). Upon 
searching a target in the Drug Target Search view, an area chart aligning 
with the target item in the search view appears, showing the publication 
trend from 1990 to the present by default. Users can adjust the date via 
a time slider and the area charts will be adjusted accordingly (R6). 

4.5 Detail View 
Upon selecting a drug target in the Drug Target Search view, the Detail 
View (Fig.1 E) presents the research landscape of the existing works 
about it in each discipline (i.e., chemistry, pharmacology, and clinical 
pharmacy) (R3). The Detail View aims to help users integrate research 
data of the drug compounds against selected target across disciplines 
(R2), and compare the detailed drug compound research progress of 
the targets (R1). The Detail View contains three panels (i.e., Chemistry 
panel (Fig.1 E1), Pharmacology panel (Fig.1 E2), and Clinical Phar-
macy panel (Fig.1 E3)) arranged from left to right following the drug 
discovery process. The discipline-specifc data points on the same drug 
compound in each panel are linked through lines. Hovering over a data 
point in any panel highlights the entire chain (R2). 

Chemistry Panel The Chemistry panel (Fig.1 E1) summarizes in-
formation about the design and synthesis of drug compounds. Each 
chemistry publication that designed new drug compounds against the 
user-selected drug target is projected into a 2D canvas as a circular 
glyph. The length of the colored segment in the outer ring of the glyph 
denotes the length of the synthesis route of the core drug compound 
proposed by the publication. The size of the inner core encodes the total 
number of drug compounds proposed by the publication. The distance 
between each pair of glyphs indicates the structural similarity between 
their core drug compounds. Glyphs close to each other indicates they 
have similar corresponding chemical structures. When a glyph is hov-
ered on, the molecular features of the core drug compounds emphasized 
in chemistry research are displayed in a pop-up tooltip (Fig.5 (b)). The 
information of the corresponding publication, including graphic ab-
stracts, title, author(s), publication year, DOI (Digital Object Identifer), 
venue, citation number, and affliation, are also shown in the tooltip. 
Users can click on the DOI to check the publication online. 

Glyph alternatives. The circular glyph in the Chemistry panel was 
designed and refned several times based on the feedback from the six 
researchers (Section 3). The frst alternative (Fig.3 A) is similar to our 
fnal design except that the total number of drug compounds proposed 
by a publication is encoded using a monotonic, sequential color scale 
in red hue in the background of the inner core. A darker or lighter color 
indicates more or fewer compounds, respectively. However, we rejected 
this design as the researchers implied that they hoped to intuitively 
understand how big design space is that the compounds proposed by 
each paper occupy. Thus, in the second alternative (Fig.3 B), we used 
the size of the ring to represent the number of drug compounds in a 
paper. However, this design was rejected as it is diffcult to identify the 
distance between two glyphs to fgure out the structural similarity of 
their drug compounds. This leads us to the current design (Fig.3 C). 

Pharmacology Panel The Pharmacology panel (Fig.1 E2) displays 
the common molecular features of each drug compound concerned 
in pharmacological testings. It contains two heatmaps correspond-
ing to the in vitro (left) and in vivo (right) assays, respectively. In 
each heatmap, each column represents a molecular feature and each 
row corresponds to a drug compound. If a drug compound proposed 

Fig. 3. Glyph alternatives. The length of the colored segment in the outer 
ring all represents the length of the synthesis route while the number of 
drug compounds in a paper is encoded differently: A) by the sequential 
color scale of the inner core, e.g., a darker color indicates more drug 
compounds studied; B) by the size of the ring, e.g., a bigger size indicates 
more drug compounds included; and C) our current design. 

in some chemistry publications never advances to pharmacological 
testing, it does not have a corresponding row in the in vitro heatmap. 
Similarly, the in vivo heatmap does not contain rows associated with 
drug compounds that have not proceeded to in vivo assays. We applied 
a monotonic, sequential color scale in blue hue to the background of a 
tile to encode its feature value. Darker (lighter) color indicates higher 
(lower) value. White is for the case when certain molecular features 
have not been tested and/or reported in the related publications though 
the drug compounds have been studied in pharmacological research. 
Detailed feature value is displayed in a tooltip when hovering over a 
tile. If all the rows cannot be ft into the panel, scrolling will be enabled. 
The Pharmacology panel also allows users to sort rows in a heatmap in 
ascending or descending order of the values in a specifc column (R6). 

Clinical Pharmacy Panel The Clinical Pharmacy panel incorporates 
a Sankey diagram to show the clinical study information from phase I 
to phase III of the drug compounds that have been advanced to clinical 
trials (Fig.1 E2). Each section in the Sankey diagram represents a drug 
compound and consists of nine subsections arranged in vertical order, 
corresponding to nine statuses of clinical studies: 1) not yet recruiting; 
2) recruiting; 3) enrolling by invitation; 4) active, not recruiting; 5) 
suspended; 6) terminated; 7) completed; 8) withdrawn; and 9) unknown 
status [24]. If there are no studies in certain status, the subsection will 
be left empty. A subsection contains one or more rectangles, each rep-
resenting an organization that is conducting or has conducted clinical 
studies about the drug. The trace connecting rectangles in different 
phases shows the progress of each clinical trial conducted by an orga-
nization. Hovering over a rectangle highlights the trace and triggers a 
tooltip showing the organization and drug name. If the organization’s 
clinical trial is terminated or withdrawn, reasons will be shown too. To 
help users easily grasp how many drugs against the selected target are 
tested in clinical trials and how many organizations are involved, we 
mark each rectangle in the form of ‘drug ID - organization ID’. 

5 USAGE SCENARIO 

We describe how Hannah, a PhD student in medicinal chemistry, uses 
MedChemLens to complete drug target selection. Hannah has picked 
four candidate drug targets for cancer, including EGFR, ALK, KRAS 
(Kirsten rat sarcoma virus), and STAT3 (Signal transducer and activator 
of transcription 3). Now she wants to use MedChemLens to investigate 
and compare these targets and choose one as her research direction. 

She starts from the Drug Target Search view (Fig.1 A) by searching 
four drug targets and inspecting their structures. Then she examines the 
Signaling Pathway view (Fig.1 B) and notices that HER2 is an upstream 
target similar to EGFR and ALK which she missed in the target candi-
date collection. Thus, she searches “HER2” in the Drug Target Search 
view. Also, she fnds that KRAS and STAT3 are downstream targets of 
EGFR, ALK, and HER2. Thus, if she chooses to study EGFR, ALK, 
and HER2, she also need to learn KRAS and STAT3, since upstream 
targets taking effect needs to go through downstream targets [2]. 

Then she turns to the Publication Trend view (Fig.1 D) to under-
stand each drug target’s research popularity and trend. She adjusts the 
publication date to 2012 - 2022 as she usually does. The view shows 
that EGFR has the most related publications, which indicates its high 
popularity and made her tentatively decide to rule out EGFR. Never-
theless, before making the fnal decision, she further clicks “EGFR” in 
the Drug Target Search view and examines existing drug compounds 
against EGFR in the Detail View. In the Chemistry panel, she easily 
notices that most glyphs are large and lie together, indicating that the 
chemical structures proposed were studied in-depth and that the latest 
proposed compounds were similar to the previous ones. In the Clinical 

Table 1. Molecular features about drug compounds that participants focus on during drug target selection 

Discipline Molecular Features Description 
IC50 The concentration of an inhibitor needed to block a given predefned stimulus by 50% [44]. 

Chemistry 
Inhibition constant (Ki) 
Kd 

The concentration needed to perform half maximal inhibition [44]. 
The equilibrium dissociation constant of a ligand receptor complex measured in a binding assay [30]. 

Selectivity The drug’s ability to preferentially produce a desired versus a non-desired effect [8]. 
IC50 Similar to IC50 in Chemistry but the inhibition is on cell receptors instead of enzyme [44]. 
EC50 The effective concentration of an agonist producing half maximum response to the particular drug [30]. 

in vitro 
Selectivity 
hERG 

Similar to selectivity in Chemistry but with fewer reaction sites. 
The inhibition of hERG channel. Lower value indicates lower cardiotoxicity and therefore lower risks. 

Pharmacology 
Solubility 
ED50 

The maximum saturation concentration of a substance in a solvent [47]. High solubility is desired in drug design. 
A dose or concentration of an agonist producing half maximal pharmacological effect in vivo [17, 30]. 

in vivo 
Half-life 
AUC 

The time required for the concentration of a drug to decline to half of its initial value [44]. 
The area under the plasma drug concentration-time curve. 

Bioavailability The extent a drug becomes completely available to its biological destinations [12]. 
Clinical Adverse effects Any undesired harmful effects in a patient or clinical investigation subject administered a pharmaceutical 
Pharmacy treatment and which is not required to have a causal relationship with this treatment [26]. 

The Overview (Fig.1 C) presents the overall performance distributions 
of existing drug compound research on the candidate targets to help 
understand the current research progress and diffculty as measured by 
assorted molecular features and inspire possible areas of improvement 
(R1, R2, R4, R5). The Publication Trend view (Fig.1 D) shows the 
research trend of each drug target searched by the user (R1). The 
Detail view (Fig.1 E) facilitates a detailed exploration of the research 
landscape of candidate drug targets in each discipline (i.e., chemistry, 
pharmacology, and clinical pharmacy) and helps integrate the research 
data across disciplines (R1, R2, R3). Furthermore, a collection of 
interactions, such as sorting, highlighting, and tooltips, is also provided 
for users to examine and compare the drug targets freely (R6). 

4.1 Drug Target Search View 

The Drug Target Search view (Fig.1 A) allows users to type the name 
of a drug target (e.g., “EGFR”, “KRAS”) of interest into the search box 
and returns a card containing its 2D structure (R1). Information about 
associated publications also appears in the same row in the Overview 
and Publication Trend view. Users can hover over a structure to enlarge 
it. They can also drag the target card up and down to place similar 
ones next to each other for easier comparison (R6). Corresponding 
information in the Overview and the Publication Trend view will also 
change position accordingly. Upon clicking on a card, the detailed 
research information of the selected target will be shown in the Detail 
View. Users can remove a target and all its related information by 
hitting the delete button on its card. 

4.2 Signaling Pathway 

The Signaling Pathway view (Fig.1 B) aims to help users understand 
the interactions between the candidate targets in the search view and 
remind users of other drug targets that may be overlooked by them (R4). 
Every time a new target is added to the Drug Target Search view, the 
Signaling Pathway view displays its corresponding signaling pathway 
with respect to other input targets in a tree format. This view allows 
users to get a sense of the interconnections (or the lack of connections) 
among various targets. In particular, each target is denoted by a unique 
node that may be shared by several paths. There could be several 
connected components appearing as separate trees. For example, as 
JAK (Janus kinase) is the downstream drug target of EGFR (Epidermal 
growth factor recepto), ALK (Anaplastic lymphoma kinase), and HER2 
(Human epidermal growth factor receptor 2), the signaling pathways of 
EGFR, ALK, and HER2 share the node representing JAK in Fig.1 B. 
All nodes representing the targets searched by the user are highlighted 
for easily locating. In addition, the Signaling Pathway view supports 
zooming and panning to obtain a clearer view, especially when the tree 
visualization becomes overly complex. 

Design alternatives. Initially, we have considered displaying the 
signaling pathway of each drug target under search separately in a tree 
format (Fig.2 A). However, it will be diffcult for medicinal chemists to 
integrate the information across these signaling pathways to identify the 
relationships between the targets. We then tried to merge the signaling 
pathways in a subway map metaphor design (Fig.2 B). Users can click 

Fig. 2. Design alternatives for the Signaling Pathway view: A) separate 
trees; B) subway metaphor map; C) our current design. 

on a drug target of interest, and its signaling pathway will be highlighted 
for easier inspection. This makes the relationships between the drug 
targets clearer but causes visual clutters. Specifcally, when the number 
of targets increases, additional overhead is required to distinguish the 
intertwined links. Also, the researchers we interviewed (Section 3) 
considered keeping redundant links in the combined pathway graph 
unnecessary for drug target selection. Thus, we merged the overlapping 
links between drug targets in our current design (Fig.2 C). 

4.3 Overview 
For each drug target, the Overview (Fig.1 C) aims to provide an overar-
ching picture of the drug compound designs related to the molecular 
features using a tabular design (R2). Each row associates with a drug 
target and aligns with the target’s position in the list of all input candi-
dates in the Drug Target Search view; each column corresponds to a 
feature introduced in Table 1. The chemistry- (colored in a red theme), 
pharmacology- (blue), and clinical-pharmacy-related (orange) columns 
are arranged from left to right following the drug discovery process to 
show the research progress of the drug target (R2). The background 
color shading of each cell in the chemistry- and pharmacology-related 
columns denotes the number of publications whose proposed com-
pounds improved the corresponding molecular feature, while in the 
clinical-pharmacy-related columns it encodes the number of clinical 
studies in each phase of clinical trials. Darker color implies more publi-
cations fall in the cell; white means no related work exists. The number 
of publications is shown in the upper right corner of the cell. 

To summarize the performance of related work on a molecular fea-
ture, we displayed the distributions of reported feature values in these 
works as a line chart in the corresponding cell (R2). This distribution 
can also imply how diffcult it is to improve the feature (R5). The x-
dimension represents the published feature values and the y-dimension 
indicates the number of publications/studies achieving a value. The 
minimum and maximum feature values are displayed on the x-axis 
indicating the progress of the research on a particular molecular feature 
(R1) and hinting researchers about what can be further improved (R4). 
Hovering over each dot on the plot displays a tooltip of feature value 
and the number of publications/studies accordingly. Because ongoing 
or completed but confdential [48] clinical studies can not report their 
study results, there may be no distribution plot summarizing the clinical 
trial results even though the cell shows that there are clinical studies 
on the drug target. This discrepancy might confuse users about the 
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Fig. 6. The system architecture and pipeline of MedChemLens (The graphic abstract image is from [21]). 

the offcial API of ClinicalTrials.gov3. 

6.2 Molecular Feature Extraction 
We developed a pipeline to extract the molecular features. The pipeline 
consists of two modules: an NLP (Natural Language Processing) mod-
ule and a revision module. 

6.2.1 The NLP Module 
Although molecular features are numerical values, their textual patterns 
in publications may vary, and the features of core drug compounds 
and derivative compounds are mixed, such as “Ki = 176 nM”, “...the 
IC50 values for compounds 5a and 5b on EGFRT790M were 5.52 and 
25.8 nM, respectively”. Thus, we used a NLP model, BERT [16], to 
automatically extract molecular features of the core drug compound 
from the textual contents of each publication. Two authors of this 
paper annotated 528 papers and the data was randomly split into 90% 
training set and 10% testing set [51, 55]. Before we passed the articles 
into the model, we frst pre-processed the documents to construct the 
vocabulary and perform word-to-index mapping. The BERT model 
achieved an accuracy of 93.9% on core drug compound ID identifca-
tion. However, it had a limited performance on the molecular features 
with an accuracy of 66.6% on average. One reason for the relatively 
low performance is that many molecular features are reported in tables 
or fgures resulting in the failure of data extraction from the textual 
contents. Thus, we further proposed a revision module to revise and 
complement the extraction results of the BERT module by extracting 
the information from tables and fgures in publications. 

6.2.2 The Revision Module 
We frst validated the results of the NLP module by format checking. 
Molecular features are numerical values and we have identifed the 
general patterns of the drug compound IDs (Section 6.1). Therefore, if 
the core drug compound IDs or certain molecular features extracted by 
the NLP module were empty or did not conform to those patterns, we 
marked those extracted felds to be revised or flled. 

Revision of drug compound ID We used EasyOCR4 to extract the 
textual words and their positions in a graphic abstract and identifed 
drug compound IDs from the extracted text based on the patterns we 
summarized. Nevertheless, many graphic abstracts may contain two or 
more drug compound IDs. Based on our sampling and checking with 
medicinal chemical researchers, we found that the core compound is 
commonly at the rightmost position. Hence, if there were multiple drug 
compound IDs in a graphic abstract, we utilized the absolute position 
of each compound ID to retrieve the rightmost one. 

Revision of molecular features Firstly, we extracted the values of 
the molecular features reported in graphical abstracts using a similar 
method to that of revising drug compound IDs. Then we extracted 
the molecular features of the core drug compounds from tables in the 
articles. Specifcally, for each table in a publication, we frst verifed 
whether it contained our identifed core drug compound ID. If so, we 
would locate the cell containing the value of the molecular feature by 
identifying the row (or column) whose number corresponding to the 

3https://clinicaltrials.gov 
4https://github.com/JaidedAI/EasyOCR 

drug compound ID and the column (or row) whose header is the name 
of the expected molecular feature. 

After executing the revision module, our pipeline fnally reached an 
accuracy score of 97.0% on drug compound ID extraction and 80.6% 
on average on molecular feature extraction. We acknowledge that we 
did not further evaluate the pipeline outside of our training data due to 
the lack of publicly available large-scale labeled dataset. Our main goal 
is to propose a basic method for automatically extracting molecular 
features from chemical publications. Future work could fne-tune our 
model based on their research data (e.g., publications and lab reports). 
Also, to avoid the over-reliance on our system, we added disclaimers in 
MedChemLens (Fig.5 (a)) to remind users that there may be inaccuracy 
in the returned results because of technological limitations. 

6.3 Chemical Structural Similarity Computation 
We calculated the structural similarity between the core drug com-
pounds of each pair of publications based on the simplifed molecular-
input line-entry system (SMILES) of the drug compounds, which is a 
line notation for describing chemical structures in textual strings [56]. 
The chemical structures of the core drug compounds are generally 
shown in the graphic abstracts of papers. Therefore, we frst used 
ChemSchematicResolver [4] to resolve the chemical structures in the 
graphic abstracts to SMILES. Then using RDKit [35], we obtained 
the extended connectivity fngerprint with bond diameter 4 (ECFP4), 
which encodes the topological information of a chemical structure as a 
fxed-length binary bit vector [45], of each core drug compound based 
on its SMILES. Finally, we calculated the Tanimoto coeffcient [37], 
a similarity coeffcient of two fngerprints, to represent the similarity 
between two drug compounds. 

6.4 Synthesis Route Length Calculation 
To calculate the synthesis route length of the core drug compound in 
each publication, we used the API of IBM RXN5 to predict the syn-
thesis routes based on the SMILES of the core drug compound. Since 
each drug compound would have several different synthesis routes, we 
defned its synthesis route length as the length of the shortest synthesis 
route with higher than 90% confdence that starts from commercially 
available chemical entities. 

7 USER STUDY 

We conducted a within-subjects study with 16 participants to evaluate 
the effectiveness of our proposed system, MedChemLens. According 
to the interviews with the medicinal chemical researchers (Section 3), 
online search, which is a common practice in drug target selection, is 
used as the baseline in the control condition. 

7.1 Participants 
We recruited 16 participants (8 males, 7 females, and 1 prefer not to say; 
age range 22-31) through online advertising and word-of-mouth. Two 
of them are postdocs who had more than eight years of medicinal chem-
istry studying experience and had multiple top research publications. 
They also had experience working in company labs. Two participants 

5https://rxn.res.ibm.com 

Fig. 4. Detail View for STAT3 

Pharmacy Panel, she observes that several drugs have passed all three 
phases of clinical trials. These information all suggest that the research 
about the drug compounds against EGFR is relatively thorough. Hence, 
Hannah decides to delete EGFR from the Drug Target Search view. 
Following a similar process, she rules out HER2 and ALK. 

She then turns to the Overview (Fig.1 C) to compare STAT3 and 
KRAS regarding research potential, value, and diffculty. Hannah 
estimates that the research progress of STAT3 is better than that of 
KRAS. First, there are more clinical trials and reported study results 
of STAT3 than those of KRAS. Second, when hovering on the cells 
of phase III, the tooltip of KRAS’s cell shows “no studies completed” 
whereas the tooltip of STAT3’s cell shows “no results reported”. Hence, 
although there is no distribution plot in either cell, the tooltips show 
that some drugs against STAT3 have passed clinical trials while the 
drugs against KRAS not. Therefore, Hannah judges that STAT3 is more 
promising than KRAS. From the white cells in the Overview indicating 
no works focusing on the corresponding molecular features, she fnds 
that some features (e.g., selectivity) in both KRAS and STAT3 are 
ignored by previous work, which could have high research potential. As 
Hannah’s research lab focuses on the potency of drug compounds, she 
views related columns and removes the other columns in the Overview. 
She notices that the drug compounds against KRAS achieved better 
(lower value is better) IC50 in chemical research stage than those against 
STAT3 though there are more related works against STAT3, which 
suggests improving the potency of STAT3 may be challenging. 

Hannah further uses the Detail View to understand the existing drug 
compounds against KRAS and STAT3. Since medicinal chemists de-
sign new drug compounds based on existing ones, Hannah wants to 
examine the research potential by comparing the existing drugs on them. 
Thus, she studies the Chemistry panel. She notices the glyphs represent-
ing drug compounds against STAT3 mostly lie together (Fig.4), whereas 
there are outliers among the glyphs against KRAS (Fig.1 E1), indicating 
that the chemical structures in the corresponding publications have not 
been studied thoroughly. Hannah therefore comprehensively examines 
the information about these publications and pharmacological prop-
erties (in the Pharmacology panel) of the proposed drug compounds. 
She also read some papers in detail through the DOI in the tooltip 
(Fig.5 (b)). In addition, she fgures the synthesis routes of these chem-
ical structures are not long, and some structures have been evaluated 
by pharmacological testings. Thus, she estimates that designing drug 
compounds against KRAS based on these scaffolds would be feasible. 
Hannah fnally compares STAT3 and KRAS in the Clinical Pharmacy 
panel. It shows that three drugs against STAT3 have been advanced to 
clinical trials with two of them have passed phase III. Following the 
lines across panels, she observes that the chemical structures of the 
three drugs are not similar. In contrast, the two glyphs in the Chemistry 
panel corresponding to the two drugs against KRAS that have been 
advanced to clinical trials are close, implying that only one scaffold 
was explored thoroughly. Comprehensively considering these factors, 
Hannah fnally selects KRAS as her future research direction. 

Fig. 5. (a) The disclaimer; (b) An example of the tooltips shown in the 
Chemistry panel. The paper shown in the tooltip is [53]. 

6 IMPLEMENTATION 

MedChemLens has an interactive web interface built with React frame-
work. It is published on a web server so that users can easily retrieve 
the website with a link and run it on their own laptops. After users input 
a drug target, the tool will automatically extract and pre-process rele-
vant data and store it in a pre-cached memory for further visualization 
use. In this section, we describe the system architecture (Fig.6) of Med-
ChemLens for extracting the information needed by medicinal chemists 
in their drug target selection process and constructing visualizations. 

6.1 Data Collection 

First, to provide users with drug target properties, we collected the 
image of the drug target structure from PDBe1 and signaling pathway 
information from OmniPath database [49]. Then we automatically col-
lected the publications and experimental reports about the drug target. 
Specifcally, as suggested by the researchers (Section 3), we chose three 
top journals of each discipline, that is: European Journal of Medicinal 
Chemistry, Journal of Medicinal Chemistry, Drug Discovery Today for 
chemistry; Nature Reviews Drug Discovery, Journal of Pharmacology 
and Experimental Therapeutics, Advanced Drug Delivery Reviews for 
pharmacology; the New England Journal of Medicine, the Lancet, the 
Journal of the American Medical Association for clinical pharmacy. To 
get the number of publications in each journal related to the inputted 
target name, our program accessed the publisher site of the journal and 
obtained the search results using the target name as the query string 
and the journal name as the restriction. For example, the publisher 
of European Journal of Medicinal Chemistry is ScienceDirect. Then 
we used its offcial Search API2 to get the search results of the user 
input target name. The number of publications per year about the drug 
target in each discipline is counted by summing up the numbers of 
publications per year in the three journals of that discipline. Accord-
ing to the interviews, medicinal chemists mainly focus on chemistry 
articles. Therefore, we collected the full texts of the publications in 
the three chemistry journals using DOIs of publications in the search 
results. These full texts contain the metadata, structural information, 
and main text of each publication. We wrote a script to automatically 
discard the publications that did not propose new drug compounds (e.g., 
surveys) by checking whether the main text contains the names of the 
molecular features and whether the graphical abstracts of the articles 
contain chemical structures using ChemSchematicResolver [4]. 

Next, we extracted the number of all proposed drug compounds from 
publications. We randomly sampled 50 medicinal chemistry articles 
and checked with the researchers about some general writing patterns 
in chemical publications. We found that the authors of the chemical 
articles usually assigned IDs (e.g., “6”, “5b”) to all their proposed drug 
compounds, and we identifed the common patterns of the IDs. In this 
way, we got the number of all new drug compounds the publication 
proposed by counting the number of unique IDs that following the 
naming pattern identifed. If the core drug compound in a paper had 
been advanced to clinical trials, it would be given a specifc drug name 
(e.g., “mZIENT”, “AZD9150”). In the same way we identifed the 
drug compound IDs, we extracted the drug name of the core drug 
compound from chemical publications. Based on the extracted drug 
names, we collected the information in the clinical pharmacy discipline 
that medicinal chemists need about the clinical trials of the drugs using 

1https://www.ebi.ac. 
2https://dev.elsevier.com/text mining.html 
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Fig. 6. The system architecture and pipeline of MedChemLens (The graphic abstract image is from [21]). 

the offcial API of ClinicalTrials.gov3. 

6.2 Molecular Feature Extraction 
We developed a pipeline to extract the molecular features. The pipeline 
consists of two modules: an NLP (Natural Language Processing) mod-
ule and a revision module. 

6.2.1 The NLP Module 
Although molecular features are numerical values, their textual patterns 
in publications may vary, and the features of core drug compounds 
and derivative compounds are mixed, such as “Ki = 176 nM”, “...the 
IC50 values for compounds 5a and 5b on EGFRT790M were 5.52 and 
25.8 nM, respectively”. Thus, we used a NLP model, BERT [16], to 
automatically extract molecular features of the core drug compound 
from the textual contents of each publication. Two authors of this 
paper annotated 528 papers and the data was randomly split into 90% 
training set and 10% testing set [51, 55]. Before we passed the articles 
into the model, we frst pre-processed the documents to construct the 
vocabulary and perform word-to-index mapping. The BERT model 
achieved an accuracy of 93.9% on core drug compound ID identifca-
tion. However, it had a limited performance on the molecular features 
with an accuracy of 66.6% on average. One reason for the relatively 
low performance is that many molecular features are reported in tables 
or fgures resulting in the failure of data extraction from the textual 
contents. Thus, we further proposed a revision module to revise and 
complement the extraction results of the BERT module by extracting 
the information from tables and fgures in publications. 

6.2.2 The Revision Module 
We frst validated the results of the NLP module by format checking. 
Molecular features are numerical values and we have identifed the 
general patterns of the drug compound IDs (Section 6.1). Therefore, if 
the core drug compound IDs or certain molecular features extracted by 
the NLP module were empty or did not conform to those patterns, we 
marked those extracted felds to be revised or flled. 

Revision of drug compound ID We used EasyOCR4 to extract the 
textual words and their positions in a graphic abstract and identifed 
drug compound IDs from the extracted text based on the patterns we 
summarized. Nevertheless, many graphic abstracts may contain two or 
more drug compound IDs. Based on our sampling and checking with 
medicinal chemical researchers, we found that the core compound is 
commonly at the rightmost position. Hence, if there were multiple drug 
compound IDs in a graphic abstract, we utilized the absolute position 
of each compound ID to retrieve the rightmost one. 

Revision of molecular features Firstly, we extracted the values of 
the molecular features reported in graphical abstracts using a similar 
method to that of revising drug compound IDs. Then we extracted 
the molecular features of the core drug compounds from tables in the 
articles. Specifcally, for each table in a publication, we frst verifed 
whether it contained our identifed core drug compound ID. If so, we 
would locate the cell containing the value of the molecular feature by 
identifying the row (or column) whose number corresponding to the 

3https://clinicaltrials.gov 
4https://github.com/JaidedAI/EasyOCR 

drug compound ID and the column (or row) whose header is the name 
of the expected molecular feature. 

After executing the revision module, our pipeline fnally reached an 
accuracy score of 97.0% on drug compound ID extraction and 80.6% 
on average on molecular feature extraction. We acknowledge that we 
did not further evaluate the pipeline outside of our training data due to 
the lack of publicly available large-scale labeled dataset. Our main goal 
is to propose a basic method for automatically extracting molecular 
features from chemical publications. Future work could fne-tune our 
model based on their research data (e.g., publications and lab reports). 
Also, to avoid the over-reliance on our system, we added disclaimers in 
MedChemLens (Fig.5 (a)) to remind users that there may be inaccuracy 
in the returned results because of technological limitations. 

6.3 Chemical Structural Similarity Computation 
We calculated the structural similarity between the core drug com-
pounds of each pair of publications based on the simplifed molecular-
input line-entry system (SMILES) of the drug compounds, which is a 
line notation for describing chemical structures in textual strings [56]. 
The chemical structures of the core drug compounds are generally 
shown in the graphic abstracts of papers. Therefore, we frst used 
ChemSchematicResolver [4] to resolve the chemical structures in the 
graphic abstracts to SMILES. Then using RDKit [35], we obtained 
the extended connectivity fngerprint with bond diameter 4 (ECFP4), 
which encodes the topological information of a chemical structure as a 
fxed-length binary bit vector [45], of each core drug compound based 
on its SMILES. Finally, we calculated the Tanimoto coeffcient [37], 
a similarity coeffcient of two fngerprints, to represent the similarity 
between two drug compounds. 

6.4 Synthesis Route Length Calculation 
To calculate the synthesis route length of the core drug compound in 
each publication, we used the API of IBM RXN5 to predict the syn-
thesis routes based on the SMILES of the core drug compound. Since 
each drug compound would have several different synthesis routes, we 
defned its synthesis route length as the length of the shortest synthesis 
route with higher than 90% confdence that starts from commercially 
available chemical entities. 

7 USER STUDY 

We conducted a within-subjects study with 16 participants to evaluate 
the effectiveness of our proposed system, MedChemLens. According 
to the interviews with the medicinal chemical researchers (Section 3), 
online search, which is a common practice in drug target selection, is 
used as the baseline in the control condition. 

7.1 Participants 
We recruited 16 participants (8 males, 7 females, and 1 prefer not to say; 
age range 22-31) through online advertising and word-of-mouth. Two 
of them are postdocs who had more than eight years of medicinal chem-
istry studying experience and had multiple top research publications. 
They also had experience working in company labs. Two participants 
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Pharmacy Panel, she observes that several drugs have passed all three 
phases of clinical trials. These information all suggest that the research 
about the drug compounds against EGFR is relatively thorough. Hence, 
Hannah decides to delete EGFR from the Drug Target Search view. 
Following a similar process, she rules out HER2 and ALK. 

She then turns to the Overview (Fig.1 C) to compare STAT3 and 
KRAS regarding research potential, value, and diffculty. Hannah 
estimates that the research progress of STAT3 is better than that of 
KRAS. First, there are more clinical trials and reported study results 
of STAT3 than those of KRAS. Second, when hovering on the cells 
of phase III, the tooltip of KRAS’s cell shows “no studies completed” 
whereas the tooltip of STAT3’s cell shows “no results reported”. Hence, 
although there is no distribution plot in either cell, the tooltips show 
that some drugs against STAT3 have passed clinical trials while the 
drugs against KRAS not. Therefore, Hannah judges that STAT3 is more 
promising than KRAS. From the white cells in the Overview indicating 
no works focusing on the corresponding molecular features, she fnds 
that some features (e.g., selectivity) in both KRAS and STAT3 are 
ignored by previous work, which could have high research potential. As 
Hannah’s research lab focuses on the potency of drug compounds, she 
views related columns and removes the other columns in the Overview. 
She notices that the drug compounds against KRAS achieved better 
(lower value is better) IC50 in chemical research stage than those against 
STAT3 though there are more related works against STAT3, which 
suggests improving the potency of STAT3 may be challenging. 

Hannah further uses the Detail View to understand the existing drug 
compounds against KRAS and STAT3. Since medicinal chemists de-
sign new drug compounds based on existing ones, Hannah wants to 
examine the research potential by comparing the existing drugs on them. 
Thus, she studies the Chemistry panel. She notices the glyphs represent-
ing drug compounds against STAT3 mostly lie together (Fig.4), whereas 
there are outliers among the glyphs against KRAS (Fig.1 E1), indicating 
that the chemical structures in the corresponding publications have not 
been studied thoroughly. Hannah therefore comprehensively examines 
the information about these publications and pharmacological prop-
erties (in the Pharmacology panel) of the proposed drug compounds. 
She also read some papers in detail through the DOI in the tooltip 
(Fig.5 (b)). In addition, she fgures the synthesis routes of these chem-
ical structures are not long, and some structures have been evaluated 
by pharmacological testings. Thus, she estimates that designing drug 
compounds against KRAS based on these scaffolds would be feasible. 
Hannah fnally compares STAT3 and KRAS in the Clinical Pharmacy 
panel. It shows that three drugs against STAT3 have been advanced to 
clinical trials with two of them have passed phase III. Following the 
lines across panels, she observes that the chemical structures of the 
three drugs are not similar. In contrast, the two glyphs in the Chemistry 
panel corresponding to the two drugs against KRAS that have been 
advanced to clinical trials are close, implying that only one scaffold 
was explored thoroughly. Comprehensively considering these factors, 
Hannah fnally selects KRAS as her future research direction. 

Fig. 5. (a) The disclaimer; (b) An example of the tooltips shown in the 
Chemistry panel. The paper shown in the tooltip is [53]. 

6 IMPLEMENTATION 

MedChemLens has an interactive web interface built with React frame-
work. It is published on a web server so that users can easily retrieve 
the website with a link and run it on their own laptops. After users input 
a drug target, the tool will automatically extract and pre-process rele-
vant data and store it in a pre-cached memory for further visualization 
use. In this section, we describe the system architecture (Fig.6) of Med-
ChemLens for extracting the information needed by medicinal chemists 
in their drug target selection process and constructing visualizations. 

6.1 Data Collection 

First, to provide users with drug target properties, we collected the 
image of the drug target structure from PDBe1 and signaling pathway 
information from OmniPath database [49]. Then we automatically col-
lected the publications and experimental reports about the drug target. 
Specifcally, as suggested by the researchers (Section 3), we chose three 
top journals of each discipline, that is: European Journal of Medicinal 
Chemistry, Journal of Medicinal Chemistry, Drug Discovery Today for 
chemistry; Nature Reviews Drug Discovery, Journal of Pharmacology 
and Experimental Therapeutics, Advanced Drug Delivery Reviews for 
pharmacology; the New England Journal of Medicine, the Lancet, the 
Journal of the American Medical Association for clinical pharmacy. To 
get the number of publications in each journal related to the inputted 
target name, our program accessed the publisher site of the journal and 
obtained the search results using the target name as the query string 
and the journal name as the restriction. For example, the publisher 
of European Journal of Medicinal Chemistry is ScienceDirect. Then 
we used its offcial Search API2 to get the search results of the user 
input target name. The number of publications per year about the drug 
target in each discipline is counted by summing up the numbers of 
publications per year in the three journals of that discipline. Accord-
ing to the interviews, medicinal chemists mainly focus on chemistry 
articles. Therefore, we collected the full texts of the publications in 
the three chemistry journals using DOIs of publications in the search 
results. These full texts contain the metadata, structural information, 
and main text of each publication. We wrote a script to automatically 
discard the publications that did not propose new drug compounds (e.g., 
surveys) by checking whether the main text contains the names of the 
molecular features and whether the graphical abstracts of the articles 
contain chemical structures using ChemSchematicResolver [4]. 

Next, we extracted the number of all proposed drug compounds from 
publications. We randomly sampled 50 medicinal chemistry articles 
and checked with the researchers about some general writing patterns 
in chemical publications. We found that the authors of the chemical 
articles usually assigned IDs (e.g., “6”, “5b”) to all their proposed drug 
compounds, and we identifed the common patterns of the IDs. In this 
way, we got the number of all new drug compounds the publication 
proposed by counting the number of unique IDs that following the 
naming pattern identifed. If the core drug compound in a paper had 
been advanced to clinical trials, it would be given a specifc drug name 
(e.g., “mZIENT”, “AZD9150”). In the same way we identifed the 
drug compound IDs, we extracted the drug name of the core drug 
compound from chemical publications. Based on the extracted drug 
names, we collected the information in the clinical pharmacy discipline 
that medicinal chemists need about the clinical trials of the drugs using 

1https://www.ebi.ac. 
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not know where this information lies in the big picture of the research 
about that drug target. In contrast, I know how much I have understood 
about the drug target when using MedChemLens”. 

Using Wilcoxon signed-rank tests, we analyzed participants’ cog-
nitive load of drug target selection in the online search condition and 
MedChemLens condition based on their ratings. The results (Fig.7) 
show that MedChemLens signifcantly reduced users’ cognitive load in 
all related dimensions. This result indicates that MedChemLens did not 
overwhelm users while assisting users in processing more information. 

8.3 Qualitative Feedback 
In general, most participants showed positive responses to the usability 
(M = 5.75, SD = 1.13) and usefulness (M = 5.75, SD = 1.13) of Med-
ChemLens. To further understand the reasons behind the scores, two 
authors of this paper conducted a thematic analysis on the transcripts 
of the post-study interview. 

8.3.1 Intuitive, Systematic and Time-saving System 
All participants regarded the system as “intuitive”, “systematic” and 
“time-saving”. Five participants thought the Signaling Pathway view 
was one of the most helpful views. For example, when using online 
search, P2 (M, 27, N) got confused as an article reported the proper-
ties of drug compounds against not only the candidate target but also 
some downstream targets that he did not know. In contrast, he said 
the Signaling Pathway view showed him why publications included 
other targets in addition to the candidate targets. Another beneft of 
MedChemLens is that it provides a holistic picture of the existing work 
about each drug target and helps users intuitively compare them. In 
general, participants believed that they could easily know which targets 
attract more research (13/16), against which targets some drugs passed 
clinical trials (12/16), and whether most publications designed drug 
compounds based on similar scaffolds or based on different scaffolds 
(7/16). Additionally, four participants commented on the convenience 
of interactions. For instance, P4 (M, 30, E) said, “it is helpful to allow 
me to drag similar targets together and compare them”. 

8.3.2 Inspiration and Insightfulness 
The system was considered “inspiring” and “insightful”. In general, 
participants were excited about MedChemLens as it not only shows 
what has been done but also uncovers potential opportunities as to 
what can be done in future research. Six participants reported that 
they gained insights from Overview about what molecular features of 
drug compounds could be further improved. Interestingly, we found 
that participants who explored the Detail View starting from different 
panels might get different insights. More specifcally, 12 participants 
began with the Chemistry panel and easily found the papers at the 
center of the research clusters that proposed classical drug compound 
structures. Two participants began with the Pharmacology panel and 
used the sorting function to locate the papers whose corresponding 
drug compounds performed best on pharmacological features. Other 
participants began with the Clinical Pharmacy panel and went back to 
the Chemistry panel following the lines across the panels to fnd the 
druggable chemical structures. Moreover, P14 (M, 22, N) pointed out 
that he got useful information that he never realized that he needed 
to know. He explained, “In the past, I mainly focused on the papers 
that proposed representative molecules. Now the Chemistry panel 
reminds me of the papers that are the outliers of the clusters. The 
chemical structures in the outlier papers seem to be more creative and 
may have greater research potential”. Eight participants commented 
that MedChemLens helped them evaluate the possible ‘benefts’ and 
‘risks’ of choosing the targets. For example, P2 (M, 27, N) said “some 
papers focus on designing drugs against this target [KRAS], but no 
drug compounds have passed the clinical trials. There seems to be an 
opportunity to make breakthroughs if I choose to study this target, but 
it might be too risky for me as a novice [researcher]”. 

8.3.3 Adaption of Workfows 
From the user study, we observed that participants would adapt their 
own workfows to the capabilities of MedChemLens. Most participants 

(14/16) stated that they would prefer beginning with MedChemLens to 
make decisions since it allows them to quickly get a general picture of 
the drug target and navigate to specifc areas of interest for a focused 
analysis. The other two participants would like to frst search online for 
general information (e.g., latest news) about the drug targets to gain an 
initial understanding and then use MedChemLens to explore the schol-
arly documentations about the targets. Interestingly, four participants 
proposed that MedChemLens may support their other research tasks 
in addition to drug target selection. For example, P2 (M, 27, N) said 

“sometimes my professor would directly tell me that a certain molecular 
feature of drug compounds against a certain target may need to be 
further improved. Then MedChemLens could help me check whether 
the feature indeed could be improved and help me flter related papers 
to analyze how to accomplish it”. 

9 DISCUSSION 

Generalizability Although our system is domain-specifc, our visual 
design and pipeline could be easily extended to other interdisciplinary 
experimental science felds (e.g., biomedicine). In these areas, re-
searchers always need to collect and integrate information from multi-
ple areas. Our molecular feature extraction pipeline could be adapted to 
help extract other types of textual, numerical, and/or visual information 
from related publications and be adjusted based on the characteristics 
of the disciplines. The components of our pipeline could be made into 
individual modules for users to plug-and-play and customize easily. 
For instance, if key features are reported in tables in publications, the 
part of the pipeline that processes tables can be applied. In addition, 
the idea behind the Chemistry panel of organizing publications around 
fgures could be applicable to other disciplines that rely on images to 
showcase their contributions, such as data visualization. 

Lessons learned. We learned several practical lessons for visual-
ization research during our system design and evaluation. 1) Choose 
the data organization method that best fts the feld. We organized 
chemical articles based on their proposed chemical structures in our 
system. Researchers confrmed that such design matches their intuition 
well and helps them gain quick insights into the research landscapes of 
drug targets and the relations between the papers. 2) Provide fexibility 
by customizing confgurations. We found that the decision-making 
strategies vary across researchers. Thus, it is important to allow users to 
adjust the organization methods of visual information as needed. For ex-
ample, in our user study, participants thought that dragging drug targets 
with their related information was helpful for the target comparison. 

Limitations First, we only focused on three top journals of each dis-
cipline as a proof of concept, and the set of molecular features presented 
in our system may be incomplete. Second, we did not evaluate our 
pipeline outside of the training data. The imperfection of the pipeline 
may affect the effectiveness of MedChemLens. Third, as medicinal 
chemistry research often takes many years [57], within the scope of 
our study, we could not examine users’ satisfaction with their decisions 
after they researched into their selected drug targets for a long time. 

10 CONCLUSION 

In this paper, we presented MedChemLens, an interactive visual tool to 
support medicinal chemists in selecting drug targets. MedChemLens 
integrates information from three disciplines (i.e., chemistry, pharma-
cology, clinical pharmacy) and organizes scholarly documentations 
following the practice of each individual discipline. Also, MedChem-
Lens captures and visualizes factors implying the possible diffculty 
of experiments. Through a within-subjects study, we demonstrated 
the effectiveness of MedChemLens in helping users analyze relevant 
literature and experimental data to select research directions. 
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had PhD degrees and had more than fve years of research experience. 
Seven participants had between two to fve years of experience, and 
the remaining fve had only one year of experience. Participants self-
reported their familiarity with drug targets about cancer and central 
nervous system (CNS) disease. 10 participants reported themselves as 
novices (N), four as knowledgeable (K), and two as experts (E). 

7.2 Procedure 
We designed two drug target selection tasks, both of which are repre-
sentative in current medicinal chemistry research and have a similar 
size of related publications in our experiments: 

1. T1: Rank fve drug targets for cancer – EGFR, HER2, ALK, 
KRAS, STAT3, based on how much the participant would like to 
choose the target as their research direction. 

2. T2: Rank fve drug targets for CNS diseases – Amyloid-beta 
precursor protein (APP), Catechol-O-methyltransferase (COMT), 
Dopamine transporter (DAT), Monoamine oxidase B (MAO-B), 
and Serotonin transporter (SERT), based on how much the partic-
ipant would like to choose the target as their research direction. 

Each participant was invited to complete the two tasks separately 
in the control and experiment conditions. In the control condition, 
participants were allowed to use any search engines they usually use 
in their routine practices, e.g., pubChem [31], Google Scholar, to fnd 
any online resources. In the experiment condition, participants were al-
lowed to use MedChemLens only. Before the task with MedChemLens, 
participants were asked to spend 5 minutes familiarizing themselves 
with the tool. We counterbalanced the task assignment and the order 
of the two conditions to minimize the potential order effect. Each 
participant was given 60 minutes for each task. They were encour-
aged to think aloud during these two sessions, and we recorded each 
session with participants’ permission. After each task, we asked the 
participants to write down their reasons for the fnal ranking and fll 
out a questionnaire (please see the supplementary material) to rate their 
experience on a 7-point Likert scale. To better understand participants’ 
ratings and behavior, we further conducted a semi-structured interview 
with them upon the completion of the two sessions. 

8 RESULTS 

In this section, we summarize quantitative results on participants’ per-
formance, user confdence and cognitive load, and qualitative feedback 
from the user study. 

8.1 User Performance 
To investigate how well MedChemLens helps users select drug targets, 
we statistically analyzed the participants’ performance of the target 
selection tasks in the user study. We measured the user performance 
using task completion time, the number of publications each participant 
inspects, and the quality of their fnal selections. 

Completion time We conducted a paired samples t-test to compare 
users’ task completion time as we found the completion time followed 
the normal distribution, in both control and experimental conditions. 
Compared with using online search (47.37, [41.64, 53.10] 95% CI), 
participants using MedChemLens (34.35, [27.71, 40.99] 95% CI) spent 
signifcantly less time (t = 5.52, d f = 15, p < .01) completing the 
target selection task. 

Number of publications each participant inspects To assess the 
effectiveness of our system in helping users flter desired information, 
we counted the number of publications each participant inspected in 
each task. As a Shapiro-Wilk test showed a signifcant departure from 
the normal distribution for MedChemLens (W (16) = .83, p = .006), 
we conducted a Wilcoxon signed-rank test to compare the number of 
publications each participant inspected in both control and experiment 
conditions. The results show that participants using MedChemLens 
(6.69, [3.11, 10.27] 95% CI) clicked on signifcantly fewer articles for a 
detailed read (Z =−2.14, p < .05) than when they used online search 
(11.00, [7.66, 14.34] 95% CI). To fgure out whether MedChemLens 
indeed saves users’ efforts in screening relevant publications, we further 

Fig. 7. Means and standard errors of the participants’ confdence in their 
selections (left) and cognitive load in drug target selection process (right) 
on a 7-point Likert scale (*: p < .05, **: p < .01) 

. 
interviewed the participants to understand their intent when opening 
certain papers. Five participants said that they opened some papers with 
online search, but found the papers not related to what they wanted after 
reading the paper for a while. In contrast, when using MedChemLens, 
participants could easily narrow down to their desired papers via various 
fltering mechanisms. P4 (M, 30, E) explained, “I can easily fnd 
articles I need, such as the ones on the core of clusters [in Chemistry 
Panel] that proposed representative drug compounds, and the ones 
whose proposed compounds have been advanced to clinical trials”. 

Final selections To investigate the effectiveness of MedChemLens 
on supporting drug target selection, we invited two experts who have 
more than 10 years of medicinal chemistry research experience to eval-
uate participants’ fnal decisions (i.e., the rankings of the given drug 
targets). After discussing with the experts, we selected rationality and 
comprehensiveness as measures to evaluate whether the participants’ 
fnal decisions were rational and whether they examined the targets com-
prehensively. Specifcally, we provided each participant’s fnal rankings 
and the corresponding justifcations to experts and asked them to rate 
participants’ fnal decisions in terms of rationality and comprehensive-
ness on a 7-point (1 – not rational/comprehensive at all, 7 - extremely 
rational/comprehensive) Likert scale. Both experts were blind to the 
study condition, and the order of the participant results was randomized. 
We analyzed the experts’ ratings using Wilcoxon signed-rank tests. The 
results show that participants’ fnal decisions were perceived by experts 
to be signifcantly more rational (Z =−2.47, p < .05) and comprehen-
sive (Z =−2.13, p < .05) in the MedChemLens condition (rationality: 
4.28, [3.80, 4.76] 95% CI; comprehensiveness: 4.59, [4.21, 4.97] 95% 
CI) than in the online search condition (rationality: 3.34, [2.83, 3.86] 
95% CI; comprehensiveness: 3.91, [3.40, 4.41] 95% CI), which indi-
cates that MedChemLens helped users make better-informed choices. 
We acknowledge that experts’ ratings may be subjective and biased. 
To minimize such effects, we asked the experts to rate participants’ 
fnal decisions following the common criteria in the feld of medicinal 
chemistry and based on whether the participants considered aspects 
comprehensively and made correct decisions accordingly instead of 
comparing the participants’ rankings with theirs. 

8.2 User Confdence and Cognitive Load 

To examine users’ experience of the drug target selection process, we 
conducted statistical analysis on participants’ ratings in the post-study 
survey about their confdence in the fnal selections and their cognitive 
load of completing the target selection tasks. 

As shown in Fig.7, participants reported to be signifcantly more 
confdent (Wilcoxon signed-rank test: Z = −2.43, p < .05) in their 
fnal selections using MedChemLens than searching online themselves. 
This result is mainly because participants thought that they were able 
to investigate each target more suffciently and therefore gained more 
comprehensive insight regarding each target with the assistance of Med-
ChemLens (P12, F, 24, K). Thematic analysis on users’ target selection 
process and the justifcations for their selections also reveal that in the 
online search condition, 12 participants overlooked several aspects (e.g., 
research popularity), of which the importance was emphasized by them 
in the MedChemLens condition. In addition, 11 participants, especially 
self-reported novices, stated that they had more control of their target 
selection process with MedChemLens. For example, P2 (M, 27, N) 
complained that he did not know where to start when facing thousands 
of search results in the online search condition. P11 (M, 22, N) added, 

“The information I got through online search is not systematic, and I do 
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not know where this information lies in the big picture of the research 
about that drug target. In contrast, I know how much I have understood 
about the drug target when using MedChemLens”. 

Using Wilcoxon signed-rank tests, we analyzed participants’ cog-
nitive load of drug target selection in the online search condition and 
MedChemLens condition based on their ratings. The results (Fig.7) 
show that MedChemLens signifcantly reduced users’ cognitive load in 
all related dimensions. This result indicates that MedChemLens did not 
overwhelm users while assisting users in processing more information. 

8.3 Qualitative Feedback 
In general, most participants showed positive responses to the usability 
(M = 5.75, SD = 1.13) and usefulness (M = 5.75, SD = 1.13) of Med-
ChemLens. To further understand the reasons behind the scores, two 
authors of this paper conducted a thematic analysis on the transcripts 
of the post-study interview. 

8.3.1 Intuitive, Systematic and Time-saving System 
All participants regarded the system as “intuitive”, “systematic” and 
“time-saving”. Five participants thought the Signaling Pathway view 
was one of the most helpful views. For example, when using online 
search, P2 (M, 27, N) got confused as an article reported the proper-
ties of drug compounds against not only the candidate target but also 
some downstream targets that he did not know. In contrast, he said 
the Signaling Pathway view showed him why publications included 
other targets in addition to the candidate targets. Another beneft of 
MedChemLens is that it provides a holistic picture of the existing work 
about each drug target and helps users intuitively compare them. In 
general, participants believed that they could easily know which targets 
attract more research (13/16), against which targets some drugs passed 
clinical trials (12/16), and whether most publications designed drug 
compounds based on similar scaffolds or based on different scaffolds 
(7/16). Additionally, four participants commented on the convenience 
of interactions. For instance, P4 (M, 30, E) said, “it is helpful to allow 
me to drag similar targets together and compare them”. 

8.3.2 Inspiration and Insightfulness 
The system was considered “inspiring” and “insightful”. In general, 
participants were excited about MedChemLens as it not only shows 
what has been done but also uncovers potential opportunities as to 
what can be done in future research. Six participants reported that 
they gained insights from Overview about what molecular features of 
drug compounds could be further improved. Interestingly, we found 
that participants who explored the Detail View starting from different 
panels might get different insights. More specifcally, 12 participants 
began with the Chemistry panel and easily found the papers at the 
center of the research clusters that proposed classical drug compound 
structures. Two participants began with the Pharmacology panel and 
used the sorting function to locate the papers whose corresponding 
drug compounds performed best on pharmacological features. Other 
participants began with the Clinical Pharmacy panel and went back to 
the Chemistry panel following the lines across the panels to fnd the 
druggable chemical structures. Moreover, P14 (M, 22, N) pointed out 
that he got useful information that he never realized that he needed 
to know. He explained, “In the past, I mainly focused on the papers 
that proposed representative molecules. Now the Chemistry panel 
reminds me of the papers that are the outliers of the clusters. The 
chemical structures in the outlier papers seem to be more creative and 
may have greater research potential”. Eight participants commented 
that MedChemLens helped them evaluate the possible ‘benefts’ and 
‘risks’ of choosing the targets. For example, P2 (M, 27, N) said “some 
papers focus on designing drugs against this target [KRAS], but no 
drug compounds have passed the clinical trials. There seems to be an 
opportunity to make breakthroughs if I choose to study this target, but 
it might be too risky for me as a novice [researcher]”. 

8.3.3 Adaption of Workfows 
From the user study, we observed that participants would adapt their 
own workfows to the capabilities of MedChemLens. Most participants 

(14/16) stated that they would prefer beginning with MedChemLens to 
make decisions since it allows them to quickly get a general picture of 
the drug target and navigate to specifc areas of interest for a focused 
analysis. The other two participants would like to frst search online for 
general information (e.g., latest news) about the drug targets to gain an 
initial understanding and then use MedChemLens to explore the schol-
arly documentations about the targets. Interestingly, four participants 
proposed that MedChemLens may support their other research tasks 
in addition to drug target selection. For example, P2 (M, 27, N) said 

“sometimes my professor would directly tell me that a certain molecular 
feature of drug compounds against a certain target may need to be 
further improved. Then MedChemLens could help me check whether 
the feature indeed could be improved and help me flter related papers 
to analyze how to accomplish it”. 

9 DISCUSSION 

Generalizability Although our system is domain-specifc, our visual 
design and pipeline could be easily extended to other interdisciplinary 
experimental science felds (e.g., biomedicine). In these areas, re-
searchers always need to collect and integrate information from multi-
ple areas. Our molecular feature extraction pipeline could be adapted to 
help extract other types of textual, numerical, and/or visual information 
from related publications and be adjusted based on the characteristics 
of the disciplines. The components of our pipeline could be made into 
individual modules for users to plug-and-play and customize easily. 
For instance, if key features are reported in tables in publications, the 
part of the pipeline that processes tables can be applied. In addition, 
the idea behind the Chemistry panel of organizing publications around 
fgures could be applicable to other disciplines that rely on images to 
showcase their contributions, such as data visualization. 

Lessons learned. We learned several practical lessons for visual-
ization research during our system design and evaluation. 1) Choose 
the data organization method that best fts the feld. We organized 
chemical articles based on their proposed chemical structures in our 
system. Researchers confrmed that such design matches their intuition 
well and helps them gain quick insights into the research landscapes of 
drug targets and the relations between the papers. 2) Provide fexibility 
by customizing confgurations. We found that the decision-making 
strategies vary across researchers. Thus, it is important to allow users to 
adjust the organization methods of visual information as needed. For ex-
ample, in our user study, participants thought that dragging drug targets 
with their related information was helpful for the target comparison. 

Limitations First, we only focused on three top journals of each dis-
cipline as a proof of concept, and the set of molecular features presented 
in our system may be incomplete. Second, we did not evaluate our 
pipeline outside of the training data. The imperfection of the pipeline 
may affect the effectiveness of MedChemLens. Third, as medicinal 
chemistry research often takes many years [57], within the scope of 
our study, we could not examine users’ satisfaction with their decisions 
after they researched into their selected drug targets for a long time. 

10 CONCLUSION 

In this paper, we presented MedChemLens, an interactive visual tool to 
support medicinal chemists in selecting drug targets. MedChemLens 
integrates information from three disciplines (i.e., chemistry, pharma-
cology, clinical pharmacy) and organizes scholarly documentations 
following the practice of each individual discipline. Also, MedChem-
Lens captures and visualizes factors implying the possible diffculty 
of experiments. Through a within-subjects study, we demonstrated 
the effectiveness of MedChemLens in helping users analyze relevant 
literature and experimental data to select research directions. 
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had PhD degrees and had more than fve years of research experience. 
Seven participants had between two to fve years of experience, and 
the remaining fve had only one year of experience. Participants self-
reported their familiarity with drug targets about cancer and central 
nervous system (CNS) disease. 10 participants reported themselves as 
novices (N), four as knowledgeable (K), and two as experts (E). 

7.2 Procedure 
We designed two drug target selection tasks, both of which are repre-
sentative in current medicinal chemistry research and have a similar 
size of related publications in our experiments: 

1. T1: Rank fve drug targets for cancer – EGFR, HER2, ALK, 
KRAS, STAT3, based on how much the participant would like to 
choose the target as their research direction. 

2. T2: Rank fve drug targets for CNS diseases – Amyloid-beta 
precursor protein (APP), Catechol-O-methyltransferase (COMT), 
Dopamine transporter (DAT), Monoamine oxidase B (MAO-B), 
and Serotonin transporter (SERT), based on how much the partic-
ipant would like to choose the target as their research direction. 

Each participant was invited to complete the two tasks separately 
in the control and experiment conditions. In the control condition, 
participants were allowed to use any search engines they usually use 
in their routine practices, e.g., pubChem [31], Google Scholar, to fnd 
any online resources. In the experiment condition, participants were al-
lowed to use MedChemLens only. Before the task with MedChemLens, 
participants were asked to spend 5 minutes familiarizing themselves 
with the tool. We counterbalanced the task assignment and the order 
of the two conditions to minimize the potential order effect. Each 
participant was given 60 minutes for each task. They were encour-
aged to think aloud during these two sessions, and we recorded each 
session with participants’ permission. After each task, we asked the 
participants to write down their reasons for the fnal ranking and fll 
out a questionnaire (please see the supplementary material) to rate their 
experience on a 7-point Likert scale. To better understand participants’ 
ratings and behavior, we further conducted a semi-structured interview 
with them upon the completion of the two sessions. 

8 RESULTS 

In this section, we summarize quantitative results on participants’ per-
formance, user confdence and cognitive load, and qualitative feedback 
from the user study. 

8.1 User Performance 
To investigate how well MedChemLens helps users select drug targets, 
we statistically analyzed the participants’ performance of the target 
selection tasks in the user study. We measured the user performance 
using task completion time, the number of publications each participant 
inspects, and the quality of their fnal selections. 

Completion time We conducted a paired samples t-test to compare 
users’ task completion time as we found the completion time followed 
the normal distribution, in both control and experimental conditions. 
Compared with using online search (47.37, [41.64, 53.10] 95% CI), 
participants using MedChemLens (34.35, [27.71, 40.99] 95% CI) spent 
signifcantly less time (t = 5.52, d f = 15, p < .01) completing the 
target selection task. 

Number of publications each participant inspects To assess the 
effectiveness of our system in helping users flter desired information, 
we counted the number of publications each participant inspected in 
each task. As a Shapiro-Wilk test showed a signifcant departure from 
the normal distribution for MedChemLens (W (16) = .83, p = .006), 
we conducted a Wilcoxon signed-rank test to compare the number of 
publications each participant inspected in both control and experiment 
conditions. The results show that participants using MedChemLens 
(6.69, [3.11, 10.27] 95% CI) clicked on signifcantly fewer articles for a 
detailed read (Z =−2.14, p < .05) than when they used online search 
(11.00, [7.66, 14.34] 95% CI). To fgure out whether MedChemLens 
indeed saves users’ efforts in screening relevant publications, we further 

Fig. 7. Means and standard errors of the participants’ confdence in their 
selections (left) and cognitive load in drug target selection process (right) 
on a 7-point Likert scale (*: p < .05, **: p < .01) 

. 
interviewed the participants to understand their intent when opening 
certain papers. Five participants said that they opened some papers with 
online search, but found the papers not related to what they wanted after 
reading the paper for a while. In contrast, when using MedChemLens, 
participants could easily narrow down to their desired papers via various 
fltering mechanisms. P4 (M, 30, E) explained, “I can easily fnd 
articles I need, such as the ones on the core of clusters [in Chemistry 
Panel] that proposed representative drug compounds, and the ones 
whose proposed compounds have been advanced to clinical trials”. 

Final selections To investigate the effectiveness of MedChemLens 
on supporting drug target selection, we invited two experts who have 
more than 10 years of medicinal chemistry research experience to eval-
uate participants’ fnal decisions (i.e., the rankings of the given drug 
targets). After discussing with the experts, we selected rationality and 
comprehensiveness as measures to evaluate whether the participants’ 
fnal decisions were rational and whether they examined the targets com-
prehensively. Specifcally, we provided each participant’s fnal rankings 
and the corresponding justifcations to experts and asked them to rate 
participants’ fnal decisions in terms of rationality and comprehensive-
ness on a 7-point (1 – not rational/comprehensive at all, 7 - extremely 
rational/comprehensive) Likert scale. Both experts were blind to the 
study condition, and the order of the participant results was randomized. 
We analyzed the experts’ ratings using Wilcoxon signed-rank tests. The 
results show that participants’ fnal decisions were perceived by experts 
to be signifcantly more rational (Z =−2.47, p < .05) and comprehen-
sive (Z =−2.13, p < .05) in the MedChemLens condition (rationality: 
4.28, [3.80, 4.76] 95% CI; comprehensiveness: 4.59, [4.21, 4.97] 95% 
CI) than in the online search condition (rationality: 3.34, [2.83, 3.86] 
95% CI; comprehensiveness: 3.91, [3.40, 4.41] 95% CI), which indi-
cates that MedChemLens helped users make better-informed choices. 
We acknowledge that experts’ ratings may be subjective and biased. 
To minimize such effects, we asked the experts to rate participants’ 
fnal decisions following the common criteria in the feld of medicinal 
chemistry and based on whether the participants considered aspects 
comprehensively and made correct decisions accordingly instead of 
comparing the participants’ rankings with theirs. 

8.2 User Confdence and Cognitive Load 

To examine users’ experience of the drug target selection process, we 
conducted statistical analysis on participants’ ratings in the post-study 
survey about their confdence in the fnal selections and their cognitive 
load of completing the target selection tasks. 

As shown in Fig.7, participants reported to be signifcantly more 
confdent (Wilcoxon signed-rank test: Z = −2.43, p < .05) in their 
fnal selections using MedChemLens than searching online themselves. 
This result is mainly because participants thought that they were able 
to investigate each target more suffciently and therefore gained more 
comprehensive insight regarding each target with the assistance of Med-
ChemLens (P12, F, 24, K). Thematic analysis on users’ target selection 
process and the justifcations for their selections also reveal that in the 
online search condition, 12 participants overlooked several aspects (e.g., 
research popularity), of which the importance was emphasized by them 
in the MedChemLens condition. In addition, 11 participants, especially 
self-reported novices, stated that they had more control of their target 
selection process with MedChemLens. For example, P2 (M, 27, N) 
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